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Preface

Mathematically, correlation is quite simply expressed. One begins with two
functions f{e) and g(e), and determines their correlation as a third function

c(e):
W2 [ fryga+ndr

This simplicity is at the core of a rich technology in practical pattern recogni-
tion. For unit-energy signals (and images or higher-dimensional signals), the
correlation output ¢(¢) achieves its maximum of 1 if and only if the signal f{7)
matches the signal g(z + 7) exactly for some ¢ value. Thus, correlation is an
important tool in determining whether the input signal or image matches a
stored signal or image. However, the straightforward correlation operation
(defined by the above equation) does not prove satisfactory in practical situa-
tions where the signals are not ideal and suffer any of the many distortions
such as image rotations, scale changes, and noise. Over the last 20 years, the
basic correlation operation has been improved to deal with these real-world
challenges. The resulting body of concept, design methods, and algorithms can
be aptly summarized as correlation pattern recognition (CPR).

Correlation pattern recognition, a subset of statistical pattern recognition, is
based on selecting or creating a reference signal and then determining the
degree to which the object under examination resembles the reference signal.
The degree of resemblance is a simple statistic on which to base decisions about
the object. We might be satisfied with deciding which class the object belongs
to, or beyond that we might want more sophisticated information about which
side we are viewing the object from — or conversely we might wish our pattern
recognition to be quite independent of the aspect from which the object is
viewed. Often it is critical to discriminate an object from classes that differ only

vil



viil Preface

subtly from the interesting class. Finally, the object may be embedded in
(or surrounded by) clutter, some of whose characteristics may be similar to
the interesting class. These considerations are at quite different levels, but the
correlation algorithms create reference signals such that their correlation against
the object produce statistics with direct information for those questions.

One of the principal strengths of CPR is the inherent robustness that results
from its evaluating the whole signal at once. The signal is treated in a gestalt —
CPR does not sweat the individual details. In contrast, feature-based techni-
ques tend minutely to extract information from piecewise examination of the
signal, and then compare the relationships among the features. By comparing
the whole image against the template, CPR is less sensitive to small mismatches
and obstructions.

For many years, the testing grounds for CPR have mainly been automatic
target recognition (ATR) applications where correlation filters were developed
to locate multiple occurrences of targets of interest (e.g., images of tanks,
trucks, etc.) in input scenes. Clearly, processing speed is of interest in such
applications, which has led to much interest in coherent optical correlators
because of their ability to yield two-dimensional Fourier transforms (FTs) at
the speed of light. However, the input and output devices in optical correlators
have not progressed as fast as one would like and it is reasonable to say that
today most image correlations are calculated digitally. Over the past few years,
there has been a growing interest in the use of correlation filters for biometrics
applications such as face recognition, fingerprint recognition, and iris recogni-
tion. In general, correlation filters should prove valuable in many image
recognition applications.

Correlation can be implemented either in the time domain (space domain for
images) or in the frequency domain. Because diffraction and propagation of
coherent light naturally and conveniently produce the two-dimensional FT —
and do so “at the speed of light” — early applications of coherent optical
processing focused on correlation. This frequency domain approach is the
reason for the use of the phrase “correlation filters.” With the availability of
the fast Fourier transform (FFT) algorithm and very high-speed digital pro-
cessors, nowadays image correlations can be carried out routinely using digital
implementations. In this book, we present both digital and optical processing
approaches to correlation and have tried to indicate the differences and
similarities. For example, in digital correlators, filter values may range more
widely than in optical correlators where the optical devices impose constraints
(e.g., that transmittance has to be a real value between 0 and 1). Another
example is that the optical detectors detect only intensity (a real, positive
value) whereas digital methods can freely produce and manipulate complex
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values. These differences have led to vigorous debates of the comparative
advantages of digital and optical correlators and we hope that this energy
has carried through to the book itself. We have enjoyed writing it.

Readers who are new to the correlation field may regard the superficial
simplicity of the correlation paradigm to be anti-climactic and make no further
attempt to grasp the versatility of the correlation pattern recognition techni-
ques. Because the output from a matched filter is the cross-correlation of the
received signal with the stored template, often correlation is simply misinter-
preted as just matched filtering. We have sought to dispel this myth with a
complete treatment of the diverse techniques for designing correlation filters
that are anything but simple matched filters. It is well known that the filter
theory finds widespread applications in controls, communications, adaptive
signal processing, and audio and video applications. From a pattern recogni-
tion viewpoint, the same filtering concepts offer substantial benefits such as
shift-invariance, graceful degradation, and avoidance of segmentation, not to
mention computational simplicity (digitally or optically), and analytical
closed-form solutions that yield optimal performance.

In putting together this book, our vision was to provide the reader with a
single source that touches on all aspects of CPR. This field is a unique synthesis
of techniques from probability and statistics, signals and systems, detection
and estimation theory, and Fourier optics. As a result, the subject of CPR is
rarely covered in traditional pattern recognition and computer vision books,
and has remained elusive to the interested outsider.

The book begins with a practical introduction to CPR, and it ends with the
current state of the art in computer-generated correlation filters. It discusses
the sometimes seemingly abstract theories (e.g., detection theory, linear alge-
bra, etc.) at the foundation of CPR, and it proceeds to applications. It presents
the material necessary for a student to operate a first optical or digital corre-
lator (aiming the level of the material at first-year graduate students in elec-
trical engineering or optics programs). The book is intended to summarize
recently published research and to put a usefully current overview of the
discipline into the hands of the seasoned worker. In short, to take a line
from Stuart L. Meyer, we are writing the book we would like to have owned
as we began working in the field.

We believe that one of the main reasons that CPR is not used in more
applications is that its practitioner must become familiar with some basic
concepts in several fields: linear algebra, probability theory, linear systems
theory, Fourier optics, and detection/estimation theory. Most students would
not be exposed to such a mix of courses. Thus, Chapters 2, 3, and 4 in this book
are devoted to providing the necessary background.
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Chapter 2 reviews basic concepts in matrix/vector theory, simple quadratic
optimization and probability theory, and random variables. Quadratic opti-
mization will prove to be of importance in many correlation filter designs; e.g.,
when minimizing the output noise variance that is a quadratic function of the
filter being designed. Similarly, basic results from probability theory, random
variables, and random processes help us to determine how a filter affects the
noise in the input.

As discussed before, correlation is implemented efficiently via the frequency
domain. This shift-invariant implementation is based on ideas and results from
the theory of linear systems, which is summarized in Chapter 3. This chapter
reviews basic filtering concepts as well as the concept of sampling, an impor-
tant link between continuous images and pixelated images. This chapter also
introduces random signal processing, where a random signal is input to a
deterministic linear, shift-invariant system.

The usual task of a pattern recognition system is to classify an input pattern
into one of a finite number of classes (or hypotheses) and, if underlying
statistics are known or can be modeled, we can use the results from detection
theory to achieve goals such as minimizing classifier error rates or average
cost. Another related topic is estimation theory, where the goal is to estimate
an unknown parameter from the observations. One application of estimation
is the estimation of a classifier error rate. Chapter 4 summarizes some basic
concepts from detection and estimation theory.

Chapters 5 and 6 are aimed at introducing the various correlation filter
designs. Chapter 5 introduces the basic correlation filters, which are aimed at
recognizing a single image. It starts with the basic notion of matched filters and
shows how its output is nothing but a correlation. But then the limitations of
the matched filter are discussed and other alternatives such as optimal tradeoff
filters (that tradeoff noise tolerance and correlation peak sharpness) are intro-
duced. Performance metrics useful for characterizing correlation filters
are introduced. Chapter 5 also introduces some correlation filter variants
(e.g., binary phase-only filter) that were introduced because of optical device
limitations.

Chapter 6 presents many advanced correlation filters (also called synthetic
discriminant function or SDF filters), which are the correlation filters being
used in many ATR and biometrics applications. In most of these advanced
correlation filter designs, the main idea is to synthesize a filter from training
images that exhibit the range of image distortions that the filter is supposed to
accommodate. One breakthrough filter is the minimum average correlation
energy (MACE) filter, which produces sharp correlation peaks and high dis-
crimination. The MACE filter has been used with good success in ATR and
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biometrics applications. This and other advanced correlation filters are dis-
cussed in Chapter 6.

Chapters 7 and 8 are devoted to optical correlator implementations.
Chapter 7 is aimed at introducing some basic optics concepts such as diffrac-
tion, propagation, interference, coherence, and polarization. This chapter also
introduces the important topic of spatial light modulators (SLMs), which are
the optical devices that convert electrical signals to optical signals.
Historically, SLMs have been the limiting factors in the speed and capabilities
of optical correlators. Nowadays, SLMs originally intended for the display
industry are fueling a growth of small laboratory tinkering. For less than
$4000, a single color television projector provides three high quality (though
slow) modulators of several hundred pixels on a side, along with their neces-
sary drive electronics. Other SLMs and architectures are becoming available
whose speeds are substantially higher than the 30 frames per second for
conventional broadcast television. Conventional wisdom in optical filter com-
putation does not make appropriate use of these modulators, as is now
possible using the recent algorithmic advances. Many of these SLMs are
potentially very powerful but are often improperly used. The algorithms now
allow us to make productive use of SLM behavior that until very recently
would have been regarded as difficult and inferior. These concepts are
discussed in Chapter 7.

Chapter 8 provides the mathematical details as well as the algorithms for
designing correlation filters that can be implemented on limited-modulation
SLMs. Unlike digital designs, these designs must carefully consider the SLM
constraints right from the start. Over the past few years, significant mathematical
advances (in particular, applying the minimal Euclidean distance [MED]
principle) have been made in the design of such limited modulation correlation
filters, the topic of Chapter 8.

Finally, Chapter 9 provides a quick review of two correlation filter applica-
tions. First is the automatic recognition of targets in synthetic aperture radar
(SAR) scenes and the second is the verification of face images. Some
MATLAB™ code is provided to illustrate the design and application of the
correlation filters.

This book would not have been possible without the help of many. At the
risk of offending many others who have helped, we would like to acknowledge
a few in particular. B. V. K. Vijaya Kumar (BVKVK) acknowledges Professor
David Casasent of Carnegie Mellon University (CMU) for introducing him to
the topic of optical computers, various colleagues and students for the many
advances summarized in this book, the Electrical and Computer Engineering
Department at CM U for supporting this effort through a sabbatical leave, and
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the Carnegie Institute of Technology for the Phil Dowd Fellowship that has
accelerated the completion of this book. BVKVK also acknowledges the
profound positive influences of his late parents (Ramamurthy Bhagavatula
and Saradamba Bhagavatula) and the immense patience and love of his wife
Latha Bhagavatula. Abhijit Mahalanobis (AM) would like to acknowledge his
mother and late father for their guiding hand, and his wife for her patience in
not ceasing to believe in the fact that all good things must come to an end
(although this book nearly proved her wrong). Richard Juday wishes to
acknowledge the support that NASA’s Johnson Space Center provided
through a decade and a half of his work in this field, and also the contributions
of literally dozens of students, visiting faculty, post-doctoral fellows, and
external colleagues. Dr. Stanley E. Monroe has been a particularly steadfast
contributor, advisor, critic, and friend to all whose work has touched the
Hybrid Vision Laboratory.

The MathWorks, Inc., very kindly provided their state-of-the-art software,
MATLAB", which we have found very useful in developing algorithms
and graphics for this book. MATLAB™" is a trademark of The MathWorks,
Inc., and is used with permission. The MathWorks does not warrant the
accuracy of the text in this book. This book’s use or discussion of
MATLAB"™ software or related products does not constitute endorsement
or sponsership by The MathWorks of a particular pedagogical approach, or
particular use of the MATLAB™ software.
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Introduction

There are many daily pattern recognition tasks that humans routinely carry
out without thinking twice. For example, we can recognize those that we know
by looking at their face or hearing their voice. You can recognize the letters
and words you are reading now because you have trained yourself to recognize
English letters and words. We can understand what someone is saying even if it
is slightly distorted (e.g., spoken too fast). However, human pattern recogni-
tion suffers from three main drawbacks: poor speed, difficulty in scaling, and
inability to handle some recognition tasks. Not surprisingly, humans can’t
match machine speeds on pattern recognition tasks where good pattern recog-
nition algorithms exist. Also, human pattern recognition ability gets over-
whelmed if the number of classes to recognize becomes very large. Although
humans have evolved to perform well on some recognition tasks such as face or
voice recognition, except for a few trained experts, most humans cannot tell
whose fingerprint they are looking at. Thus, there are many interesting pattern
recognition tasks for which we need machines.

The field of machine learning or pattern recognition is rich with many
elegant concepts and results. One set of pattern recognition methods that we
feel has not been explained in sufficient detail is that of correlation filters. One
reason why correlation filters have not been employed more for pattern
recognition applications is that their use requires background in and famil-
iarity with different disciplines such as linear systems, random processes,
matrix/vector methods, statistical decision theory, pattern recognition, optical
processing, and digital signal processing. This book is aimed at providing such
background as well as introducing the reader to state-of-the-art in design and
analysis of correlation filters for pattern recognition. The next two sections in
this chapter will provide a brief introduction to pattern recognition and
correlation, and in the last section we provide a brief outline of the rest of
this book.
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1.1 Pattern recognition

In pattern recognition, the main goal is to assign an observation into one of
multiple classes. The observation can be a signal (e.g., speech signal), an image
(e.g., an aerial view of a ground scene) or a higher-dimensional object (e.g.,
video sequence, hyperspectral signature, etc.) although we will use an image as
the default object in this book. The classes depend on the application at hand.
In automatic target recognition (ATR) applications, the goal may be to
classify the input observation as either natural or man-made, and follow this
up with finer classification such as vehicle vs. non-vehicle, tanks vs. trucks, one
type of tank vs. another type.

Another important class of pattern recognition applications is the use of
biometric signatures (e.g., face image, fingerprint image, iris image, and voice
signals) for person identification. In some biometric recognition applications
(e.g., accessing the automatic teller machine), we may be looking at a verifica-
tion application where the goal is to see whether a stored template matches the
live template in order to accept the subject as an authorized user. In other
biometric recognition scenarios (e.g., deciding whether a particular person is in
a database), we may want to match the live biometric to several stored
biometric signatures.

One standard paradigm for pattern recognition is shown in Figure 1.1. The
observed input image is first preprocessed. The goals of preprocessing depend
very much on the details of the application at hand, but can include: reducing
the noise, improving the contrast or dynamic range of the image, enhancing the
edge information in the image, registering the image, and other application-
specific processes.

A feature extraction module next extracts features from the preprocessed
image. The goal of feature extraction is to produce a few descriptors to capture
the essence of an input image. The number of features is usually much smaller
than the number of pixels in that input image. For example, a 64 x 64 image
contains 4096 numbers (namely the pixel values), yet we may be able to capture
the essence of this image using only 10 or 20 features. Coming up with good
features depends very much on the designer’s experience in an application
domain. For example, for fingerprint recognition, it is well known that
features such as ridge endings and bifurcations called minutiae (shown in

Pre- Feature ot >
—_—
:)na%grn processing extraction Classification Class

Figure 1.1 Block diagram showing the major steps in image pattern recognition
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Figure 1.2 Some features used for fingerprint recognition: ridge ending (left)
and ridge bifurcation (right)

Figure 1.2) are useful for distinguishing one fingerprint from another. In other
pattern recognition applications, different features may be used. For example,
in face recognition, one may use geometric features such as the distance
between the eyes or intensity features such as the average gray scale in the
image, etc. There is no set of features that is a universal set in that it is good for
all pattern recognition problems. Almost always, it is the designer’s experi-
ence, insight, and intuition that help in the identification of good features.
The features are next input to a classifier module. Its goal is to assign the
features derived from the input observation to one of the classes. The classi-
fiers are designed to optimize some metric such as probability of classification
error (if underlying probability densities are known), or empirical error count
(if a validation set of data with known ground truth' is available). Classifiers
come in a variety of flavors including statistical classifiers, artificial neural-
network-based classifiers and fuzzy logic-based classifiers. The suitability of a
classifier scheme depends very much on the performance metric of interest,
and on what a-priori information is available about how features appear for
different classes. If we have probability density functions for various features
for different classes, we can design statistical classification schemes.
Sometimes, such probability density information may not be available and,
instead, we may have sample feature vectors from different classes. In such a

' A term from remote sensing to denote the correct class of the object being tested.
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(a) (b)

Figure 1.3 Synthetic aperture radar (SAR) images of two vehicles, (a) T72 and
(b) BTR70, from the public MSTAR database [3]

situation, we may want to use trainable classifiers such as neural networks. In
this book, we will not discuss these different pattern recognition paradigms.
Interested readers are encouraged to consult some of the many excellent
references [1, 2] discussing general pattern recognition methods.

Another important pattern recognition paradigm is to use the training data
directly instead of first determining some features and performing classifica-
tion based on those features. While feature extraction works well in many
applications, it is not always easy for humans to identify what the good
features may be. This is particularly difficult when we are facing classification
problems such as the one shown in Figure 1.3, where the images were acquired
using a synthetic aperture radar (SAR) and the goal is to assign the SAR
images to one of two classes (tank vs. truck). Humans are ill equipped to come
up with the “best” features for this classification problem. We may be better off
letting the images speak for themselves, rather than imposing our judgments of
what parts of SAR images are important and consistent in the way a target
appears in the SAR imagery. Correlation pattern recognition (CPR) is an
excellent paradigm for using training images to design a classifier and to
classify a test image.

1.2 Correlation

Most readers are probably familiar with the basic concept of correlation as it
arises in probability theory. We say that two random variables (RVs, the
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Figure 1.4 Schematic of the image correlation: reference image, test image,
and ideal correlation output

concept to be explained more precisely in Chapter 2) are correlated if knowing
something about one tells you something about the other RV. There are
degrees of correlation and correlation can be positive or negative. The role
of correlation for pattern recognition is not much different in that it tries to
capture how similar or different a test object is from training objects. However,
straightforward correlation works well only when the test object matches well
with the training set and, in this book, we will provide many methods to
improve the basic correlation and to achieve attributes such as tolerance to
real-world differences or distortions (such as image rotations, scale changes,
illumination variations, etc.), and discrimination from other classes.

We will introduce the concept of CPR using Figure 1.4. In this figure, we
have two images: a reference image of the pattern we are looking for and a test
image that contains many patterns. In this example, we are looking for the
letter “C.” But in other image recognition applications, the reference r[m, n|
can be an (optical, infrared, or SAR) image of a tank and the test image ?[m, n]
can be an aerial view of the battlefield scene. In a biometric application, the
reference may be a client’s face image stored on a smart card, and the test
image may be the one he is presenting live to a camera. For the particular case
in Figure 1.4, let us assume that the images are binary with black regions
taking on the value 1 and white regions taking on the value 0.

The correlation of the reference image r[m, n] and the test image #[m, n]
proceeds as follows. Imagine overlaying the smaller reference image on top of
the upper left corner portion of the test image. The two images are multiplied
(pixel-wise) and the values in the resulting product array are summed to obtain
the correlation value of the reference image with the test image for that relative
location between the two. This calculation of correlation values is then
repeated by shifting the reference image to all possible centerings of the
reference image with respect to the test image. As indicated in the idealized
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correlation output in Figure 1.4, large correlation values should be obtained at
the three locations where the reference matches the test image. Thus, we can
locate the targets of interest by examining the correlation output for peaks and
determining if those correlation peaks are sufficiently large to indicate the
presence of a reference object. Thus, when we refer to CPR in this book, we
are not referring to just one correlation value (i.e., one inner product of two
arrays), but rather to a correlation output ¢[m, n] that can have as many pixels
as the test image. The following equation captures the cross-correlation process

c[m,n]:ZZt[k,l]r[k+m,l+n] (1.1)
K1

From Eq. (1.1), we see that correlation output ¢[m, n] is the result of adding
many values, or we can say that the correlation operation is an integrative
operation. The advantage of such an integrative operation is that no single
pixel in the test image by itself is critical to forming the correlation output. This
results in the desired property that correlation offers graceful degradation. We
illustrate the graceful degradation property in Figure 1.5. Part (a) of this figure
shows a full face image from the Carnegie Mellon University (CMU) Pose,
IMlumination, and Expression (PIE) face database [4] and part (b) shows the
correlation output (in an isometric view) from a CPR system designed to
search for the image in part (a). As expected, the correlation output exhibits
a large value indicating that the test image indeed matches the reference image.
Part (c) shows the same face except that a portion of the face image is occluded.
Although the resulting correlation output in part (d) exhibits correlation
peaks smaller than in part (b), it is clear that a correlation peak is still present
indicating that the test image does indeed match the reference object. Some
other face recognition methods (that rely on locating both eyes to start the
feature extraction process) will not exhibit similar graceful degradation
properties.

Another important benefit of CPR is the in-built shift-invariance. As we will
show in later chapters, correlation operation can be implemented as a linear,
shift-invariant filter (this shift-invariance concept will be made more precise
in Chapter 3 on linear systems), which means that if the test image contains
the reference object at a shifted location, the correlation output is also shifted
by exactly the same amount. This shift-invariance property is illustrated
in parts () and (f) of Figure 1.5. Part (e) shows a shifted and occluded version
of the reference image and the resulting correlation output in part (f) is shifted
by the same amount, but the correlation peak is still very discernible. Thus,
there is no need to go through the trouble of centering the input image prior to
recognizing it.



