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Preface

This is not a book for theoretical physicists. Rather it is addressed to profession-
als from other disciplines, as well as to physics students who may wish to have
in one slim volume a concise survey of the four traditional branches of theo-
retical physics. We have added a fifth chapter, which emphasizes the possible
connections between basic physics and geometry. Thus we start with classical
mechanics, where Isaac Newton was the dominating force, and end with frac-
tal concepts, pionecred by Benoit Mandelbrot. Just as reading a review article
should not replace the study of original research publicaticns, so also perusing the
present short volume should not replace systematic study of more comprehensive
texts for those wishing a firmer grounding in theoretical physics.

The opening paragraphs of Chapter 5 benefitted from input by B. Jorgensen.
We wish to thank G. Daccord for providing us with Plates 7 and 8, F. Family
for Plates 1 and 15, A.D. Fowler for Plate 3, R. Lenormand for Plate 11, P.
Meakin for Plate 14 as well as the cover illustration, J. Nittmann for Plate 13,
U. Oxaal for Plate 10, A. Skjeltorp for Plates 4, 9 and 16, K.R. Sreenivasan for
Plate 5, R.H.R. Stanley for Plate 2, and P. Trunfio for Plates 6 and 12. We also
thank A. Armstrong, A. Coniglio, J. Hajdu, F.W. Hehl, K.W. Kehr, J. Kertes:,
A. Margolina, R. Selinger, P. Trunfio, and D.E. Wolf as well as many students
— particularly L. Jaeger — who offered their feedback at appropriate occasions
and A. Ammstrong for translating Chapters 1-4 from the original German edition
published by Springer. ‘ .

Jiilich and Boston , D. Stauffer
July 1990 H.E. Stanley
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1. Mechanics

Theoretical physics is the first science to be expressed mathematically: the results
of experiments should be predicted or interpreted by mathematical formulae.
Mathematical logic, theoretical chemistry and theoretical biology arrived much
later. Physics had been understood mathematically in Greece more than 2000
years earlier, for example the law of buoyancy announced by Archimedes —
lacking The New York Times — with Eureka! Theoretical Physics first really came
into flower, however, with Kepler’s laws and their explanation by Newton’s laws
of gravitation and motion. We also shall start from that point.

1.1 Point Mechanics

1.1.1 Basic Concepts of Mechanics and Kinematics

A point mass is a mass whose spatial dimension is negligibly small in compar-
ison with the distances involved in the problem under’ consideration. Kepler’s
laws, for example, describe the earth as a point mass “circling” the sun. We
know, of course, that the earth is not really a point, and geographers cannot
treat it in their field of work as a point. Theoretical physicists, however, find this
notion very convenient for describing approximately the motion of the planets:
theoretical physics is the science of successful approximations. Biologists often
have difficulties in accepting similarly drastic approximations in their field.

The motion of a point mass is described by a position vector » as a function
of time ¢, where r consists of the three components (z,y, z) of a rectangular
coordinate system. (A boldface variable represents a vector. The same variable
not in boldface represents the absolute magnitude of the vector, thus for example
r = |r].), Its velocity v is the time derivative

W= =09 (L.

where a dot over a variable indicates the derivative witk respect to time ¢. The
acceleration a is 2

a(t)= — = 'E't? L (on'."v ol) ' (1.2)

the second derivative of the position vector with respect to time.
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Galileo Galilei (1564-1642) discovered, reputedly by experimentally drop-
ping objectives from the Leaning Tower of Pisa, that all objects fall to the ground
equally “fast”, with the constant acceleration

a=g and ¢=98Im/s® . (1.3)

Nowadays this law can be conveniently “‘demonstrated” in the university lecture
room by allowing a piece of chalk and a scrap of paper to drop simultaneously:
both reach the floor at the same time ... don’t they?

It will be observed that theoretical physics is often concerned with asymptotic
limiting cases: equation (1.3) is valid only in the limiting case of vanishing fric-
tion, never fully achieved experimentally, just as good chemistry can be carried
out only with “chemically pure” materials. Nature is so complex that natural sci-
entists prefer to observe unnatural limiting cases, which are easier to understand.
A realistic description of Nature must strive to combine the laws so obtained, in
such a way that they describe the reality, and not the limiting cases.

The differential equation (1.3), d?r/dt? = (0,0, —g) has for its solution the
well known parabolic trajectory

r(t) = ro + vot + (0,0, —g)t2 /2 |

-where the z axis is taken as usual to be the upward vertical. Here ro and vq
are the position and - the velocity initially (at ¢ = 0). It is more complicated to
explain the motion of the planets around the sun; in 1609 and 1619 Johann Kepler
accounted for the observations known at that time with the three Kepler laws:

(1) Each planet moves on an ellipse with the sun at a focal point.

(2) The radius vector » (from the sun to the planet) sweeps out equal
areas in equal times.

(3) The ratio (orbital period)’/(major semi-axis)® has the same value for
all planets in our solar system.

Ellipses are finite conic sections and hence differ from hyperbolae; the lim-
iting case between cllipses and hyperbolae is the parabola. In polar coordinates
(distance r, angle ¢) we have ,

P
B l1+ecos ¢

where ¢ < 1 is the eccentricity of the ellipse and the planetary orbit. (Circle
€ = (); parabola ¢ = 1; hyperbola ¢ > 1; see Fig. 1.1.) Hyperbolic orbits are
exhibited by comets; however, Halley’s Comet is not a comet in this sense, but
a very eccentric planet.

It is remarkable, especially for moder science politicians, that from these
laws of Kepler for the motion of remote planets, theoretical physics and New-
ton’s law of motion resulted. Modern mechanics was derived, not from practical,

b
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e
e

\ _'_,_4'
1 N Fig. 1.1. Examples of an ellipse, an hyperbola, and a parabola as limiting
B case (e = 1/2, 2 and 1, respectively)

“down to earth” research, but from a desire to understand the motion of the
planets in order to produce better horoscopes. Kepler also occupied himself with
snowflakes (see Chap. 5), a still controversial theme of research in computer
physics in 1987. That many of his contemporaries ignored Kepler’s work, and
that he did not always get his salary, places many of us today on a par with him,
at least in this respect.

1.1.2 Newton’s Law of Motion

Regardless of fundamental debates on how one defines “force” and “mass”, we
designate a reference system as an inertial system if a force-free body moves in
a straight line with a steady velocity. We write the law of motion discovered by
Isaac Newton. (1642-1727) thus:

f=ma
force = mass x acceleration (1.4)

For free fall we state Galileo’s law (1.3) as
weight =mg . (1.5)

Forces are added as vectors (“parallelogram of forces”), for two bodies we have
action = — reaction, and masses are added arithmetically. So long as we do not
need to take account of Einstein’s theory of relativity, masses are independent
of velocity.

The momentum p is defined by p = mv, so that (1.4) may also be written
as: .

dp i
B (1.6)
which remains valid even with relativity. The law action = — reaction then states
that:

The sum of the momenta of two mutually interacting point masses re-
mains constant. (.7
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It is crucial to these formulae that the force is proportional to the acceleration
and not to the velocity. For thousands of years it was believed that there was a
connection with the velocity, as is suggested by one’s daily experience dominated
by friction. For seventeenth century philosophers it was very difficult to accept
that force-free bodies would continue to move with constant velocity; children
of the space age have long been familiar with this idea.

It is not stipulated which of the many poss1blc inertial systems is used one
can specify the origin of coordinates in one’s office or in the Department of
Education. Transformations from one inertial system to another (“Galileo trans-
formations™) are written mathematically as:

r'=Rr+uvpt+ry ; t'=t+1p (1.8)

with arbitrary parameters v, 7o, to (Fig. 1.2). Here R is a rotational matrix with
three “degrees of freedom” (three angles of rotation); there are three degrees of
freedom also in each of vg and ro, and the tenth degree of freedom is #o. Corre-
sponding to these ten continuous variables in the general Galileo transformation
we shall later find ten laws of conservation.

4
PLEEE DT 3

|

v - l

¢ ]

/ .z

/
/Lvot + 7
T
Fig. 1.2. Example of a transformation (1.8) in  Fig.1.3. Polar coordinates (r, 4) on a flat disk
two-dimensional space rotating with angular velocity w, viewed from
above

There are interesting effects if the system of reference is not an inertial sys-
tem. For example we can consider a flat disk rotating (relative to the fixed stars)
with an angular velocity w = w(¢) (Fig. 1.3). The radial forces then occurring
are well known from rides on a carousel. Let the unit vector in the ¢ direction
be e, = r/|r|, and the unit vector perpendicular to it in the direction of rotation
be ey, where ¢ is the angle with the z-axis: z = rcos ¢,y =rsin ¢. The time
derivative of e, is wey, that of ey is —we,., with the angular velocity w = d¢/dt.
The velocxty is
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 d(re,) __ dr

dt = e,..dt +rwegy
according to the rule for the differentiation of a product. Similarly for the accel-
eration a and the force f we have

m dt?

Of the four terms on the right hand side the third is especially interesting. The
first is “normal”, the second is “centrifugal”, the last occurs only if the angular
velocity varies. In the case when, as at the north pole on the rotating earth, the
angular velocity is constant, the last term disappears. The penultimate term in
(1.9) refers to the Coriolis force and implies that in the northern hemisphere of the
carth swiftly moving objects are deflected to the right, as observed with various
phenomena on the rotating earth: Foucault’s pendulum (1851), the precipitous
right bank of the Volga, the direction of spin of European depressions, Caribbean
hurricanes and Pacific typhoons. For example, in an area of low pressure in the
North Atlantic the air flows inwards; if the origin of our polar coordinates is
taken at the centre of the depression (and for the sake of simplicity this is taken
at the north pole), dr/dt is then negative, w is constant, and the “deflection” -
of the wind observed from the rotating earth is always towards the right; at the
south pole it is reversed. (If the observer is not at the north pole, w has to be
multiplied by sin ¢, where ¢ is the latitude: at the equator there is no Coriolis
force.)

_'t- =a=v= (éz—t —wzr) e, +Q2fw+rw)e; . o (19)

1.1.3 Simple Applications of Newton’s Law
a) Energy Law. Since f = ma we have:

jir _ drds _domip) T
o R g | inog

where T = mv?/2 is the kinetic energy. Accordingly the difference between the
kinetic energy at position 1 (or time 1) and that at position 2 is given by:

0 2 ) 2
T(tz) — T(t1) =/ fodt =/ fdr
1 1

which corresponds to the mechanical work done on the point mass (“work =
force times displacement”). (The product of two vectors such as f and v is here
the scalar product, viz. fyvz + fyvy + f2vs. The multiplication point is omitted.
The cross product of two vectors such as f x v comes later.) The power dT'/dt
(“power = work/time”) is therefore equal to the product of force f and velocity
v, as one appreciates abov~ all on the motorway, but also in the study.

A three-dimensional force field f(r) is called conservative if the above inte-
gral over f dr between two fixed endpoints 1 and 2 is independent of the path
followed from 1 to 2. The gravity force f = mg, for example, is conservative:
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/fdr=—-mgh 3

where the height £ is independent of the path followed. Defining the potential
energy

we then have:

The force f is conservative if and only if a potential U exists such that

f=—gradU = -VU . ' (1.10)

Here we usually have conservative forces to deal with and often neglect
frictional forces, which are not conservative. If a point mass now moves from 1
to 2 in a conservative field of force, we have:

2
T2—Tl=/l fdr=—Us-Up) |

so that Ty + Uy = T2 + Uy, i.e. T + U = const:

The energy T + U is constant in a conservative field of force. (1.11)

Whoever can find an exception to this law of energy so central to our daily
life can produce perpetual motion. We shall later introduce other forms of energy
besides T and U, so that frictional losses (“heat”) etc. can also be introduced into
the energy law, allowing non-conservative forces also to be considered. Equation
(1.11) shows mathematically that one can already predict important properties of
the motion without having to calculate explicitly the entire course of the motion

(“motion integrals”).

b) One-dimensional Motion and the Pendulum. In one dimension all forces
(depending on z only and thus ignoring friction) are automatically conservative,
since there is only a unique path from one point to another point in a straight
line. Accordingly E = U(z) + mv?/2 is always constant, with dU/dz = — f and
arbitrary force f(z). (Mathematicians should know that physicists pretend that
all reasonable functions are always differentiable and intcgrable, and only now
consider that known mathematical monsters such as “fractals” (see Chap. 5) also
have physical meaning.) One can also see this directly:
A = vz +mv@- = —fv+niva=0
dt dz dt dt
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Moreover we have dt/dz = 1/v = [(E — U)2/m]~/2, and hence

: dz '
o [ T

Accordingly, to within an integration @mm, the time is determined as a
function of position z by a relatively simple integral. Many pocket calculators can
already carry out integrations automatically at the push of a button. For harmonic
oscillators, such as the small amplitude pendulum, or the weight oscillating up
and down on a spring, U(z) is proportional to z?, and this leads to sine.and cosine
oscillations for z(), provided that the reader knows the integral of (1 —z2)~'/2,
In general, if the energy E results in a motion in a potential trough of the curve
U(z), there is a periodic motion (Fig. 1.4), which however need not always
be sin (wt). In the anharmonic pendulum, for example, the restoring force is
proportional to sin (z) (here z is the angle), and the integral (1.12) leads to
elliptic functions, which I do not propose to pursue any further.

(1.12)

Fig. 1.4. Periodic motion between the points a and b, when
the energy F lies in the trough of the potential U(z)

x

Notwithstanding the exact solution by (1.12), it is also useful to consider a
computer program, with which one can solve f = ma directly. Quite basically
(I leave better methods_ to the numerical mathematicians) one divides up the
time into individual time steps At. If I know the position z at that time I can
calculate the force f and hence the acceleration a = f/m. The velocity v varies
in the interval At by aAt, the position z by vAt. I thus construct the command
sequence of the program PENDULUM, which is constantly to be repeated.

calculate f(z)

replace v by v + (f/m)At
replace z by z + vAt
return to calculation of f

At the start we need an initial velocity vo and an initial position zo. By suitable
choice of the unit of time the mass can be set equal to unity. Programmable
pocket calculators can be eminently suitable for executing this program. It is
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presented here in the computer language BASIC for f = —sin z. It is clear
that programming can be very easy; one should not be frightened by textbooks,
where a page of programming may be devoted merely to the input of the initial
data.

PROGRAM PENDULUM _
10 x =0.0 ‘
20 v =1.0 ‘
30 dt=0.1 :
40 f=-sin(x)
50 v =v+fxdt
60 x =x+v*dt
70 print x,v
- 80 goto 40
90 end

In BASIC and FORTRAN

,a=b + ¢ (a := b + c; in PASCAL)
signifies that the sum of b and c is to be stored at the place in store reserved for
the variable a. The command

n=n+1

is therefore not a sensational new mathematical discovery, but indicates that the
variable n is to be increased by one from its previous value. By “goto” one
commands the computer control to jump to the program line corresponding to
the number indicated. In the above program the computer must be stopped by a
command. In line 40 the appropriate force law is declared. It is of course still
shorter if one simply replaces lines 40 and 50 by

40v = v - sin(x)*dt

¢) Angular Momentum and Torque. The cross product L = r X p of position
and momentum is the angular momentum, and M = r x f is the torque. Pedantic
scientists might maintain that the cross product is not really a vector but an
antitymmetric 3 x 3 matrix. We three-dimensional physicists can quite happily
live with the pretence of handling L and M as vectors. '

As the analogue of f = dp/dt we have

dL
L=
M = 4 (1.13)
which can also be written as
M=rxﬁ=L;p-)--—ixp=Z .

and since the vector dr/dt is parallel to the vector p, the cross product of the
two vectors vanishes. Geometrically L/m = r x v is twice the rate at which
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Hg.l.s.muim;uhrmswqxombymendiuvmrpumn
time is a half of the cross-product * x v. The upper picture is as seen,

" looking along the axis. The lower picture shows in three dimensions the
angle ¢ and the vectors L and w

w

area is swept out by the radius vector r (Fig. 1.5); the second law of Kepler
therefore states that the sun exerts no torque on the earth and therefore the
angular momentum and the rate at which area is swept out remain constant.

d) Central Forces. Central forces are those forces F° which act in the direction
of the radius vector r, thus F'(r) = f(r)e, with an arbitrary scalar function f of
the vector r. Then the torque M =r x F =(r x r)f(r)/|r|=0:

Central forces exert no torque and leave the angular momentum urm-
changed. : (1.14)

For all central forces the motion of the point mass lies in a plane normal to
the constant angular momentum L:

=r(rxp)=p(r xr)=0
using the triple product rule

a(b x c) = c(a x b) = b(c x a)

The calculation of the angular momentum in polar coordinates shows that for
this motion wr? remains constant: the nearer the point mass is to the centre of
force, the faster it orbits round it. Question: Does this mean that winter is always
longer than summer?

¢) Isotropic Central Forces.: Most central forces with which theoretical physi-
cists have to deal are isotropic central forces. These are central forces in which
the function f(r) depends only on the magnitude |r| —randnotonthedmcnon
F = f(r)e,. With

U = - / fir)dr
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we then have F = —grad U and f = —dU/dr: the potential energy U also
depends only on the digtance r. Important examples are:

U~1/r,s0 f ~1/r%: gravitation, Coulomb’s law;

U ~exp(—r/€)/r: Yukawa potential; screened Coulomb potential;

U=ocoforr<a,U=0forr > a: hard spheres (billiard balls);

U=o00,-UpandOforr < a,a < r < band r > b: spheres with potential
well;

(a/r)12 — (a/r)5: Lennard-Jones or “6-12" potential;

U ~ 12 harmonic oscillator.

(Here ~ is the symbol for proportionality.)

For the computer simulation of real gases such as argon the Lennard-Jones
potential is the most important: one places 10° such point masses in a large
computer and moves each according to force = mass x. acceleration, where the
force is the sum of the Lennard-Jones forces from the neighbouring particles.
This method is called “molecular dynamics” and uses a lot of computer time.

Since there is always a potential energy U, isotropic central forces are always
conservative. If one constructs any apparatus in.which only gravity and electrical
forces occur, then the energy E = U + T is necessarily constant. In a manner
similar to the one-dimensional case the equation of motion can here be solved
exactly, by resolving the velocity v into a component dr/dt in the r-direction
and a component rd¢/dt = rw perpendicular thereto and applying L = mwr?:

2

E=U+T-= U+Tzv—
2 2, 7r2/,2.2
U+ m(dr/dtz) + rw? —U+ m[(dr/dt) 2+L /m*r]

[In order to economise on parentheses, physicists often write a/bc for the fraction
a/(bc).] Accordingly, with Uegr = U + L?/2mr?, we have:

dr dr
[ ) = . 1.1
@~ VAE-Ua/m 1 / AE - Ue)/m @15

By defining the effective poténn'al Uesr we can thus reduce the problem to the
same form as in one dimension (1.12). However, we now want to calculate also

the angle ¢(t), using

d¢ dr d¢ L
- 2 = 2—— . S\ D i —
L =mr‘w=mr i A 3 V2(E Ueg)/m : (1.16)

Integration of this yields ¢(r) and everything is solved.

f) Motion in a Gravitational Field. Two masses M and m separated by a
distance r attract each other according to Newton’s law of gravity



