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CHAPTER O
Introduction
0.1 Purpose i e

These notes present a calculus of concurrent systems. The presentation
is partly informal, and aimed at practice; we unfold the calculus through
the medium of examples each of which illustrates first its expressive power,
and second the techniques which it offers for verifying properties of a
system.

A useful calculus, of camputing systems as of anything else, must have
a high level of articulacy in a full sense of the word implying not only
richness in expression but also flexibility in manipulation. It should be
possible to describe existing systems, to specify and program new systems,
and to argue mathematically about them, all without leaving the notational
framework of the calculus.

These are demanding criteria, and it may be impossible to meet them
even for the full range of concurrent systems which are the proper concern
of a camputer scientist, let alone for systems in general. But the attempt
must be made. We believe that our calculus succeeds at least to this extent:
the same notations are used both in defining and in reasoning about systems,
and - as our examples will show - it appears to be applicable not only to
programs (e.g. operating systems or parts of them) but also to data struc-
tures and, at a certain level of abstraction, to hardware systems. For
the latter however, we do not claim to reach the detailed level at which
the correct functioning of a system depends on timing considerations.

Apart fram articulacy, we aim at an underlying theory whose basis is
a small well-knit collection of ideas and which justifies the manipulations
of the calculus. This is as important as generality - perhaps even more
important. Any theory will be superseded sooner or later; during its life,
understanding it and assessing it are only possible and worthwhile if it
is seen as a logical growth from rather few.basic assumptions and concepts.
We take this further in the next section, where we introduce our chosen
conceptual basis.

One purpose of these notes is to provide material for a graduate course.
With this in mind (indeed, the notes grew as a graduate course at Aarhus
University in Autum 1979) we have tried to find a good expository sequence,



and have anitted same parts of the theory - which will appear in technical
publications - in favour of case studies. There are plenty of exercises,
and anyone who bases a course on the notes should be able to think of others;
one pleasant feature of concurrent systems is the wealth and variety of
small but non-trivial examples! We cduld have included many more examples
in the text, and thereby given greater evidence for the fairly wide
applicability of the calculus; but, since our main aim is to present

it as a calculus, it seemed a good rule that every example program or

system should be subjected to same proof or to same manipulation.

0.2 Character

Our calculus if founded on two central ideas. The first is observation;
we aim to describe a concurrent system fully enough to determine exactly
what behaviour will be seen or experienced by an external observer. Thus
the approach is thoroughly extensional; two systems are indistinguishable
if we cannot tell them apart without pulling them apart. We therefore
give a formal definition of dbservation equivalence (in Chapter 7) and
investigate its properties.

This by no means prevents us fram studying the structure of systems.
Every interesting concurrent system is built fram independent agents which
camunicate, and synchronized cammnication is our second central idea.

We regard a cammunication between two camponent agents as an indivisible
action of the camposite system, and the heart of our algebra of systems

is concurrent camposition, a binary operation which camwposes two inde-
pendent agents, allowing them to communicate. It is as central for us

as sequential camposition is for sequential programming, and indeed subsumes
the latter as a special case. Since for us a program or system description
is just a term of the calculus, the structure of the program or system

(its intension) is reflected in the structure of the term. Our manipulations
often consist of transforming a temm, yielding a term with different inten-
sion but identical behaviour (extension). Such transformations are familiar
in sequential programming, where the extension may just be a mathematical
function (the "input/output behaviour"); for concurrent systems however,

it seems clear that functions are inadequate as extensions.

These two central ideas are really one. For we suppose that the only
way to observe a system is to cammnicate with it, which makes the cbserver




and system together a larger system. The other side of this coin is
that to place two camponents in cammunication (i.e. to campose them)

is just to let them cbserve each other. If observing and camunicating
are the same, it follows that one cannot observe a system without its
participation. The analogy with quantum physics may or may not be super-
ficial, but the approach is unifying and appears natural.

We call the calculus CCS (Calculus of Cammnicating Systems). The
terms of CCS stand for behaviours (extensions)of systems and are subject
to equational laws. This gives us an algebra, and we are in agreement
with van Emde Boas and Janssen [EBJ] who argue that Frege's principle
of compositionality of meaning requires an algebraic framework. But CCS
is samewhat more than algebra; for example, derivatives and derivations
of terms play an important part in describing the dynamics of behaviours.

The variety of systems which can be expressed and discussed in CCS
is illustrated by the examples in the text: an agent for scheduling
task performance by several other agents (Chapter 3); ‘'data flow'
camputations and a concurrent numerical algorithm (Chapter 4); memory
devices and data structures (Chapter 8); semantic description of a
parallel programming language (Chapter 9). In addition, G. Milne [Mln 3]
modelled and verified a peripheral hardware device - a cardreader - using
an earlier version of the present ideas.

After these remarks, the character of the calculus is best discovered
by a quick look through Chapters 1-4, ignoring technical details. §0.5
(Outline) may also help, but the next two sections are not essential for
a quick appraisal.

0.3 Related Work

At present, the most fully developed theory of concurrency is that
of Petri and his colleagues. (See for example C.A. Petri, "Introduction
to General Net Theory" [Pet], and H.J. Genrich, K. Lautenbach, ».S.
Thiagarajan, "An Overview of Net Theory" [GLT].) It is important to
ocontrast our calculus with Net Theory, in terms of underlying concepts.

For Net Theory, a (perhaps the) basic notion is the concurrency
relation over the places (conditions) and transitions (events) of a
system; if two events (say) are in this relation, it indicates that



they are causally independent and may occur in either order or simul-
taneously. This relation is conspicuously absent in our theory, at

least as a basic notion. When we compose two agents it is the synchroni-
zation of their mutual communications which determines the camposite; we
treat their independent actions as occurring in arbitrary order but not
simultaneously. The reason is that we assume of our external cbserver
that he can make only one cbservation at a time; this implies that he

is blind to the possibility that the system can support two observations
simultaneously, so this possibility is irrelevant to the extension of

the system in our sense. This assumption is certainly open to (extensive!)
debate, but gives our calculus a simplicity which would be absent other-
wise. To answer the natural dbjection that it is unwieldy to consider all
possible sequences (interleavings) of a set of causally independent events,
we refer the reader to our case studies, for example in Chapters 3 and 8,
to satisfy himself that our methods can avoid this unwieldiness almost
completely.

On the other hand, Net Theory provides many strong analytic techniques;
we must justify the proposal of another theory. The emphasis in our calculus
is upon synthesis and upon extension; algebra appears to be a natural tool
for expressing how systems are built, and in showing that a system meets its
specification we are demanding properties of its extension. The activity
of programming - more generally, of system synthesis - falls naturally
into CCS, and we believe our approach to be more articulate in this respect
than Net Theory, at least on present evidence. It remains for us to
develop analytic techniques to match those of ‘Net Theory, whose achieve-
ments will be a valuable guide.

As a bridge between Net Theory and programming languages for concur-
rency, we should mention the early work of Karp and Miller [KM] on parallel
program schemata. This work bears a relation to Net Theory in yielding an
analysis of properties of concurrent systems, such as deadlock and liveness;
it also cames closer to programming (in the conventional sense) , being a
generalisation of the familiar notion of a sequential flow chart.

In recent proposals for concurrent programming languages there is a
trend towards direct cammmication between camponents or modules, and away
fram communication through shared registers or variables, Examples are:



N. Wirth "MODUIA: A language for modular multiprogramming"”, [Wirl;

P. Brinch Hansen "Distributed Processes; a concurrent programming concept",
[Bri 2]; C.A.R. Hoare "Cammmicating Sequential Processes", [Hoa 3].
Hoare's "monitors" [Hoa 2] gave a discipline for the administration of
shared resources in concurrent programming. These papers have helped
towards understanding the art of concurrent programming. Our calculus
differs from all of them in two ways: first, it is not in the accepted
sense an imperative language - there are no cammands, only expressions;
second, it has evolved as part of a mathematical study. In the author's
view it is hard to do mathematics with imperative languages, though one
may add mathematics (or logic) to them to get a proof methodology, as in
the well-known "assertion" method or Hoare's axiamatic method.

One of the main encumbrances to proof in imperative languages is the
presence of a more-or-less global memory (the assignable variables). This
was recognized by Hoare in "Cammmicating Sequential Processes"; although
CSP is imperative Hoare avoids one aspect of global memory which makes
concurrent programs hard to analyse, by forbidding any member of a set of
concurrent programs to alter the value of a variable mentioned by another
member. This significant step brings CSP quite close to our calculus, the
more so because the treatment of cammnication is similar and expressed in
similar notation. Indeed, algorithms can often be translated easily fram
one to the other, and it is reascnable to hope that a semantics and proof
theory for CSP can be developed fram CCS. Hoare, in his paper and more
recently, gives encouraging evidence for the expressiveness of CSP.

We now turn to two models based on non-synchronized cammunication.
One, with strong expressive power, is Hewitt's Actor Systems; a recent
reference is [HAL]. Here the communication discipline is that each
message sent by an actor will, after finite time, arrive at its destination
actor ; no structure over waiting messages (e.g. ordering by send-time)
is imposed. This, together with the dynamic creation of actors, yields
an interesting programming method. However, it seems to the author that
the fluidity of structure in the model, and the need to handle the
collection of waiting messages, poses difficulties for a tractable
extensional theory.

Another non-synchronized model, deliberately less expressive, was
first studied by Kahn and reported by him and MacQueen [KMQ]. Here the
intercammnication of agents is via unbounded buffers and queues, the



whole being determinate. Problems have arisen in extending it to non-
determinate systems, but many non-trivial algorithms find their best
expression in this medium, and it is an example of applicative (i.e.
non-imperative) programming which yields to extensional treatment by
the semantic techniques of Scott. Moreover, Wadge [Wad] has recently
shown how simple calculations can demonstrate the liveness of such
systems.

A lucid camparative account of three approaches - Hewitt, Kahn/
MacQueen and Milner - is given in [MQ].

In Chapter 9 of these notes we show how one type of concurrent
language - where communication is via shared variables - may be derived
fraom or expressed in terms of CCS. This provides same evidence that our
calculus is rich in expression, but we certainly do not claim to be able
to derive every language for concurrency.

A rather different style of presenting a concurrent system is
exemplified by the path expressions of Campbell and Habermann [CaH].
Here the active parts of the system are defined separately fram the
constraints (e.g. the path expressions) which dictate how they must
synchronize. More recent work by Lauer, Shields and others - mainly
at Newcastle - shows that this model indeed yields to mathematical
analysis. A very different example of this separation is the elegant
work of Maggiolo-Schettini et al [MWW]; here the constraints are
presented negatively, by stating what conjunctions of states (of Separate
camponent agents) may not occur. This approach has an advantage for
Systems whose components are largely independent (the authors call it
"loose coupling"), since then only few constraints need to be expressed.

This section has shown the surprising variety of possible treatments
of concurrent systems. It is nothing like a canprehensive survey, and
the author is aware that important work has not been mentioned, but it
will serve to provide same perspective on the work presented here.

0.4 Evolution

This work evolved fram an attempt to treat commmnication mathemati-
cally. In Milner : "Processes: a mathematical model of camputing agents"
(Mil 1] a model of interacting agents was constructed, using Scott's



theory of damains. This was refined and grew more algebraic in G. Milne
and Milner: "Concurrent Processes and their syntax" [MM]. At this
point we proposed no programming language, but were able to prove
properties of defined concurrent behaviours. For example, Milne in his
Ph.D. Thesis "A mathematical model of concurrent camputation" [Mln]
proved partial correctness of a piece of hardware, a card-reader, built
from four separate camponents as detailed in its hardware description.
Our model at this stage drew upon Plotkin's and Smyth's Powerdamain
constructions, [Plo 1, Smyl. which extended Scott's theory to admit
non-determinism. Part of our algebra is studied in depth in [Mil 2].

At this point there were two crucial developments. First - as we
had hoped - our behaviour definitions locked considerably like programs,
and the resemblance was increased by merely improving notation. The
result, essentially the language of CCS, is reported in [Mil 3] and
was partly prampted by discussions with Hoare and Scott. (For completeness,
two other papers [Mil 4,5] by the author are included in the reference
list. Each gives a slightly different perspective fram [Mil 3], and
different examples.) The second development was to realise that the
resulting language has many interpretations; and that the Powerdamain
model, and variants of it, may not be the correct ones. A criterion was
needed, to reject the wrong interpretations. For this purpose, we turned
to observation equivalence; two behaviour expressions should have the
same interpretation in the model iff in all contexts they are indistinguish-
able by observation.

It now turns out that a definition of cbservation equivalence (for
which admittedly there are a few alternatives) determines a model, up
to isamorphism, and moreover yields algebraic laws which are of practical
use in arguing about behatdours. We have strong hope for a set of laws
which are in same sense camplete; in fact the laws given in Chapters 5
and 7 have been shown camplete for a simplified class of finite (temminating)
behaviours. In this case, "camplete" means that if two behaviour expressions
are observation-equivalent in all contexts then they may be proved equal
by the laws; this completeness is shown in [HM].

0.5 Outline

In Chapter 1 we discuss informally the idea of experimenting on, or
observing, a non-deterministic agent; this leads to the notion of



synchronisation tree (ST) as the behaviour of an agent. Chapter 2 dis-
cusses mutual experiment, or cammnication, between agents, and develops
an algebra of STs. In Chapter 3 we do a small case-study (a scheduling
system) and prove samething about it, anticipating the formal definition
of observation equivalence and its properties to be dealt with fully in
Chapter 7.

Chapter4enrid1esourcanmmications-uptonantheyhavebeenjust
synchronizations - to allow the passing of values from one agent to another,
and illustrates the greater expressive power in two more examples; one is
akin to Data Flow, and the other is a concurrent algorithm for finding a
zero of a continuous function. The notion of derivative of a behaviour
is introduced, and used in the second example.

In Chapter 5 we define CCS formally, giving its dynamics in terms
of derivations (derivative sequences) . This yields our strong congruence
relation, under which two programs are congruent iff they have essentially
the same derivations, and we establish several laws obeyed by the congruence.
In Chapter 6 we present cammmication trees (CTs, a generalisation of STs)
as a model which obeys these laws; this model is not necessary for the
further development, but meant as an aid to understanding.

Chapter 7 is the core of the theory; observation equivalence is
treated in depth, and fram it we gain our main congruence relation,
observation congruence, under which two programs are congruent'iff they
cannot be distinguished by dbservation in any context. Having derived
sarepmpextiesofthecongruence,weusethanjndlapterBtopmvethe
correct behaviour of two further systems, both to do with data structures.

In Chapters 9 and 10 we look at same derived Algebras. One takes the
form of an imperative concurrent programming language, with assignment
statements, "cobegin-coend" statements, and procedures. In effect, we
show how to translate this language directly into CCS. The other is a
restriction of CCS in which determinacy is guaranteed, and we indicate
how proofs about such programs can be simpler than in the general case.

Finally, in Chapter 11 we try to evaluate what has been achieved,
and indicate directions for future research.



CHAPTER 1

Experimenting on nondeterministic machines

1.1 Traditional equivalence of finite state acceptors

Take a pair S,T of nondeterministic acceptors over the alphabet
% ={a,b,c,d} :

The accepting states of S and T are s, and t2 respectively; in non-
deterministic acceptors we can always make do, as here, with a single 'dead'
accepting state.

A standard argument that S and T are equivalent, meaning that they
accept the same language (set of strings), runs as follows. Taking Sy (resp
ti) to represent the language accepted starting from state sy (resp ti) , we
get a set of equations for S, and for T :

s, = as, t, =at, + ati
s, = bs2 + csy t1 = bt2
s, =¢ ti = ct3
Sy = dso t2 =€
ty = dt

Here as usual + stands for union of languages, ¢ for the language {e}

containing énly the empty string, and we can think of the symbol a standing
for a function over languages: as = a(s) = {ao; o € s} .

Now by simple substitution we deduce
8, = a(be + cdso) o
By applying the distributive law a(s + s') = as + as' we deduce
S, = abe + acdso .
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and we can go further, using a standard rule for solving such equations known
as Arden's rule, to get

8= (acd) *abe .
For T it is even simpler; we get directly (without using distributivity)
t, = abe + acdt,

and the unique solvability of such equations tells us that s; =t; , so S
and T are equivalent acceptors.

But are they equivalent, in all useful senses?

1.2 Experimenting upon acceptors

Think differently about an acceptor over {a,b,c,d} . It is a black
box, whose behaviour you want to investigate by asking it to accept symbols
one at a time. So each box has four buttons, one for each symbol:

a 2
S b ¢ Sy p d T b e t ¢ d
& €

There are four atamic experiments you can do, one for each symbol. Doing an
a-experiment on S (secretly in state s; , but you don't know that) con-
sists in trying to press the a-button, with two possible outcames in general:

(1) Failure - the button is locked;
(ii) Success - the button is unlocked, and goes down (and
secretly a state transition occurs) .

In fact we camnot distinguish between S and T , in their initial states,
by any single atamic experiment; the a-experiment succeeds in each case, and
the other three fail.

After a successful a—experiment on each machine, which may yield

a a
S b s, ¢d T b ¢ ti ¢ d
& &

we may try another atomic experiment, in our aim to see if the machines are
equivalent or not. Clearly a b-experiment now succeeds for S and fails
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for T , though the other three experiments fail to distinguish them. After
trying the b-experiment, then, can we conclude that S and T are not
equivalent?

No, because S's response to the a—experiment could have been different
(for all we know) and locked the b-button, while T's response could have
been different (for all we know - and it could indeed!) and unlocked the
b-button. Following this argument further, we may feel forced to admit that
no finite amount of experiment could prove to us that S and T are, or are
not, equivalent!

But suppose

(1) It is the weather at any mament which determines the choice of
transition (in case of ambiguity, e.g. T at to under an
a-experiment) ;

(ii) The weather has only finitely many states - at least as far
as choice-resolution is concerned ;

(iii) We can control the weather .

For sare machines these assumptions are not so outrageous; for example, one
of two pulses may always arrive first within a certain temperature range, and
outside this range the other may always arrive first. (At the boundary of
the range we have the well-known glitch problem, which we shall ignore here.)

Now, by conducting an a-experiment on S and T under all weather con-
ditions (always in their start states, which we have to assume are recover-
able), we can find that S's b-button is always unlocked, but that T's
b-button is sametimes locked, and we can conclude that the machines are not

equivalent.

Is this sense of equivalence, in which S and T are not equivalent,
a meaningful one? We shall find that we can make it precise and shall adopt
it - partly because it yields a nice theory, partly because it is a finer
(smaller) equivalence relation than the standard one (which we can always
recover by introducing the distributive law used in §1.1), but more for the
following reason. Imagine that the b-buttons on S and T are hidden.
Then in all weathers every successful experiment upon S unlocks soame
visible button:

S (with b hidden) is not deadlockable'

BRI R i
1,1&_7’:&1



