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Editor’s Preface

The seminal ‘MIT notes’ of Dennis Sullivan were issued in June
1970 and were widely circulated at the time. The notes had a ma-
jor influence on the development of both algebraic and geometric
topology, pioneering

m the localization and completion of spaces in homotopy theory,
including p-local, profinite and rational homotopy theory, lead-
ing to the solution of the Adams conjecture on the relationship
between vector bundles and spherical fibrations,

» the formulation of the ‘Sullivan conjecture’ on the contractibility
of the space of maps from the classifying space of a finite group
to a finite dimensional CW complex,

= the action of the Galois group over QQ of the algebraic closure @ of
Q on smooth manifold structures in profinite homotopy theory,

» the K-theory orientation of PL manifolds and bundles.

Some of this material has been already published by Sullivan him-
self: in an article! in the Proceedings of the 1970 Nice ICM, and
in the 1974 Annals of Mathematics papers Genetics of homotopy
theory and the Adams conjecture and The transversality character-
istic class and linking cycles in surgery theory?. Many of the ideas
originating in the notes have been the starting point of subsequent

lreprinted at the end of this volume
2joint with John Morgan
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developments®. However, the text itself retains a unique flavour of
its time, and of the range of Sullivan’s ideas. As Wall wrote in sec-
tion 17F Sullivan’s results of his book Surgery on compact manifolds
(1971) : Also, it is difficult to summarise Sullivan’s work so briefly:
the full philosophical exposition in (the notes) should be read. The
notes were supposed to be Part I of a larger work; unfortunately,
Part II was never written. The volume concludes with a Postscript
written by Sullivan in 2004, which sets the notes in the context of
his entire mathematical oeuvre as well as some of his family life,
bringing the story up to date.

The notes have had a somewhat underground existence, as a kind
of Western samizdat. Paradoxically, a Russian translation was pub-
lished in the Soviet Union in 1975% but this has long been out of
print. As noted in Mathematical Reviews, the translation does not
include the jokes and other irrelevant material that enlivened the
English edition. The current edition is a faithful reproduction of
the original, except that some minor errors have been corrected.

The notes were TeX’ed by lain Rendall, who also redrew all the
diagrams using METAPOST. The 1970 Nice ICM article was Tex’ed
by Karen Duhart. Pete Bousfield and Guido Mislin helped prepare
the bibliography, which lists the most important books and papers
in the last 35 years bearing witness to the enduring influence of the
notes. Martin Crossley did some preliminary proofreading, which
was completed by Greg Brumfiel (“ein Mann der ersten Stunde”®).
Dennis Sullivan himself has supported the preparation of this edition
via his Albert Einstein Chair in Science at CUNY. I am very grateful
to all the above for their help.

Andrew Ranicki

Edinburgh, October, 2004

3For example, my own work on the algebraic L-theory orientations of topological manifolds
and bundles.

4The picture of an infinite mapping telescope on page 34 is a rendering of the picture in the
Russian edition.

5A man of the first hour.



Preface

This compulsion to localize began with the author’s work on in-
variants of combinatorial manifolds in 1965-67. It was clear from the
beginning that the prime 2 and the odd primes had to be treated
differently.

This point arises algebraically when one looks at the invariants of
a quadratic form!. (Actually for manifolds only characteristic 2 and
characteristic zero invariants are considered.)

The point arises geometrically when one tries to see the extent of
these invariants. In this regard the question of representing cycles
by submanifolds comes up. At 2 every class is representable. At odd
primes there are many obstructions. (Thom).

The invariants-at odd primes required more investigation because
of the simple non-representing fact about cycles. The natural invari-
ant is the signature invariant of M — the function which assigns the
“signature of the intersection with M” to every closed submanifold
of a tubular neighborhood of M in Euclidean space.

A natural algebraic formulation of this invariant is that of a canon-
ical K-theory orientation

Ay € K-homology of M .

1'Which according to Winkelnkemper “... is the basic discretization of a compact manifold.”
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In Chapter 6 we discuss this situation in the dual context of bun-
dles. This (Alexander) duality between manifold theory and bundle
theory depends on transversality and the geometric technique of
surgery. The duality is sharp in the simply connected context.

Thus in this work we treat only the dual bundle theory — however
motivated by questions about manifolds.

The bundle theory is homotopy theoretical and amenable to the
arithmetic discussions in the first Chapters. This discussion con-
cerns the problem of “tensoring homotopy theory” with various
rings. Most notable are the cases when Z is replaced by the ra-
tionals Q or the p-adic integers Zp.

These localization processes are motivated in part by the ‘invari-
ants discussion’ above. The geometric questions do not however
motivate going as far as the p-adic integers.?

One is led here by Adams’ work on fibre homotopy equivalences
between vector bundles — which is certainly germane to the manifold
questions above. Adams finds that a certain basic homotopy relation
should hold between vector bundles related by his famous operations

y*.

Adams proves that this relation is universal (if it holds at all) —
a very provocative state of affairs.

Actually Adams states infinitely many relations — one for each
prime p. Each relation has information at every prime not equal to

p-

At this point Quillen noticed that the Adams conjecture has an
analogue in characteristic p which is immediately provable. He sug-
gested that the etale homotopy of mod p algebraic varieties be used
to decide the topological Adams conjecture.

Meanwhile, the Adams conjecture for vector bundles was seen to
influence the structure of piecewise linear and topological theories.

The author tried to find some topological or geometric under-
standing of Adams’ phenomenon. What resulted was a reformula-
tion which can be proved just using the existence of an algebraic

2Although the Hasse-Minkowski theorem on quadratic forms should do this.
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construction of the finite cohomology of an algebraic variety (etale
theory).

This picture which can only be described in the context of the
p-adic integers is the following — in the p-adic context the theory of
vector bundles in each dimension has a natural group of symmetries.

These symmetries in the (n—1) dimensional theory provide canon-
ical fibre homotopy equivalence in the n dimensional theory which
more than prove the assertion of Adams. In fact each orbit of the
action has a well defined (unstable) fibre homotopy type.

The symmetry in these vector bundle theories is the Galois sym-
metry of the roots of unity homotopy theoretically realized in the
‘Cech nerves’ of algebraic coverings of Grassmannians.

The symmetry extends to K-theory and a dense subset of the sym-
metries may be identified with the “isomorphic part of the Adams
operations”. We note however that this identification is not essential
in the development of consequences of the Galois phenomena. The
fact that certain complicated expressions in exterior powers of vec-
tor bundles give good operations in K-theory is more a testament to
Adams’ ingenuity than to the ultimate naturality of this viewpoint.

The Galois symmetry (because of the K-theory formulation of
the signature invariant) extends to combinatorial theory and even
topological theory (because of the triangulation theorems of Kirby-
Siebenmann). This symmetry can be combined with the periodicity
of geometric topology to extend Adams’ program in several ways —

i) the homotopy relation implied by conjugacy under the action
of the Galois group holds in the topological theory and is also
universal there.

ii) an explicit calculation of the effect of the Galois group on the
topology can be made —

for vector bundles E the signature invariant has an analytical
description,

Ag in K¢(E),

and the topological type of E is measured by the effect of the
Galois group on this invariant.



One consequence is that two different vector bundles which are
fixed by elements of finite order in the Galois group are also topolog-
ically distinct. For example, at the prime 3 the torsion subgroup is
generated by complex conjugation — thus any pair of non isomorphic
vector bundles are topologically distinct at 3.

The periodicity alluded to is that in the theory of fibre homotopy
equivalences between PL or topological bundles (see Chapter 6 -
Normal Invariants).

For odd primes this theory is isomorphic to K-theory, and geomet-
ric periodicity becomes Bott periodicity. (For non-simply connected
manifolds the periodicity finds beautiful algebraic expression in the
surgery groups of C. T. C. Wall.)

To carry out the discussion of Chapter 6 we need the works of the
first five chapters.

The main points are contained in chapters 3 and 5.

In chapter 3 a description of the p-adic completion of a homotopy
type is given. The resulting object is a homotopy type with the
extra structure® of a compact topology on the contravariant functor
it determines.

The p-adic types one for each p can be combined with a rational
homotopy type (Chapter 2) to build a classical homotopy type.

One point about these p-adic types is that they often have sym-
metry which is not apparent or does not exist in the classical con-
text. For example in Chapter 4 where p-adic spherical fibrations are
discussed, we find from the extra symmetry in CPP*°, p-adically com-
pleted, one can construct a theory of principal spherical fibrations
(one for each divisor of p — 1).

Another point about p-adic homotopy types is that they can be
naturally constructed from the Grothendieck theory of etale coho-
mology in algebraic geometry. The long chapter 5 concerns this
etale theory which we explicate using the Cech like construction of
Lubkin. This construction has geometric appeal and content and
should yield many applications in geometric homotopy theory.*

3which is “intrinsic” to the homotopy type in the sense of interest here.
4The study of homotopy theory that has geometric significance by geometrical qua homotopy
theoretical methods.
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To form these p-adic homotopy types we use the inverse limit
technique of Chapter 3. The arithmetic square of Chapter 3 shows
what has to be added to the etale homotopy type to give the classical
homotopy type.®

We consider the Galois symmetry in vector bundle theory in some
detail and end with an attempt to analyze “real varieties”. The
attempt leads to an interesting topological conjecture.

Chapter 1 gives some algebraic background and preparation for
the later Chapters. It contains the examples of profinite groups in
topology and algebra that concern us here.

In part 116 we study the prime 2 and try to interpret geometrically
the structure in Chapter 6 on the manifold level. We will also pursue
the idea of a localized manifold — a concept which has interesting
examples from algebra and geometry.

Finally, we acknowledge our debt to John Morgan of Princeton
University — who mastered the lion’s share of material in a few short
months with one lecture of suggestions. He prepared an earlier man-
uscript on the beginning Chapters and I am certain this manuscript
would not have appeared now (or in the recent future) without his
considerable efforts.

Also, the calculations of Greg Brumfiel were psychologically in-
valuable in the beginning of this work. I greatly enjoyed and bene-
fited from our conversations at Princeton in 1967 and later.

5Actually it is a beginning.
Swhich was never written (AAR).
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Chapter 1

ALGEBRAIC CONSTRUCTIONS

We will discuss some algebraic constructions. These are localiza-
tion and completion of rings and groups. We consider properties of
each and some connections between them.

Localization

Unless otherwise stated rings will have units and be integral do-
mains.

Let R be a ring. S C R — {0} is a multiplicative subset if 1 € S
and a,b€ S implies a-b € S.

DEFINITION 1.1 If S C R — {0} is a multiplicative subset then
S7IR, “R localized away from S”
is defined as equivalence classes
{r/s|r € R,s €S}
where

r/s~7r'[s iff rs'=r's.
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S~1R is made into a ring by defining

[r/s]-[r'/s'] =[rr'/ss'] and
[r/s] +['/s] = [—+—] |

The localization homomorphism
R— SR
sends r into [r/1].

ExXAMPLE 1 If p C R is a prime ideal, R—p is a multiplicative subset.
Define
R,, “R localized at p”

as (R—p)~'R.

In R, every element outside pR, is invertible. The localization
map R — R, sends p into the unique maximal ideal of non-units in

R,.

If R is an integral domain 0 is a prime ideal, and R localized at
zero is the field of quotients of R.

The localization of the ring R extends to the theory of modules
over R. If M is an R-module, define the localized S~!R-module,
S~IM by

ST'M =M ®rS7'R.

Intuitively S~ M is obtained by making all the operations on M
by elements of S into isomorphisms.

Interesting examples occur in topology.

ExXAMPLE 2 (P. A. Smith, A. Borel, G. Segal) Let X be a locally
compact polyhedron with a symmetry of order 2 (involution), 7.

What is the relation between the homology of the subcomplex of
fixed points F' and the “homology of the pair (X,T)”?

Let S denote the (contractible) infinite dimensional sphere with
its antipodal involution. Then X x S has the diagonal fixed point
free involution and there is an equivariant homotopy class of maps

XxS—-S



Algebraic Constructions 3

(which is unique up to equivariant homotopy). This gives a map
Xr=(Xx8)/T - S/T =RP®
and makes the “equivariant cohomology of (X,T)”
H*(X1;Z/2)
into an R-module, where
R = Zy[z] = H*(RP>;Z/2).

In R we have the multiplicative set S generated by z, and the coho-
mology of the fixed points with coefficients in the ring S™'R = R, =
R[z7!] is just the localized equivariant cohomology,

H*(F;R;) = H*(X7;Z/2) with z inverted = H*(X1;Z/2) g Ry .

For most of our work we do not need this general situation of
localization. We will consider most often the case where R is the
ring of integers and the R-modules are arbitrary Abelian groups.

Let £ be a set of primes in Z. We will write “Z localized at £’
Ze=S"1Z
where S is the multiplicative set generated by the primes not in £.
When /£ contains only one prime ¢ = {p}, we can write
Ly = Ly
since Zy is just the localization of the integers at the prime ideal p.
Other examples are

Z{a,ll primes} = Z and Z¢g=Q=1Zo .

In general, it is easy to see that the collection of Z,’s

{Z¢}

is just the collection of subrings of Q with unit. We will see below
that the tensor product over Z,

Ly @7z, Ly = Lprpr



