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Preface

Injection moulding is one of the most important methods of manufacturing
plastics products. Through the development of sophisticated micro-
processor control systems, the modern injection moulding machine is
capable of producing precision mouldings with close tolerances in large
numbers and with excellent reproducibility. This capability, however, is
often limited by the lack of a proper appreciation of mould design.

The mould, or tool as it is often called, is at the heart of the injection
moulding process. Its basic function is to accept the plastic melt from the
injection unit and cool it to the desired shape prior to ejection. It is not,
however, simply a matter of the mould having an impression of the shape
to be moulded. Many other factors have to be taken into account — for
example, the ability to fill the mould impression properly and efficiently
without inducing weaknesses in the moulding and the efficient cooling of
the moulding in order to maximise production rates without diminishing
the quality of the moulding. In addition, the type of mould, gate and
runner system, and ejection system which will best meet the needs of a
particular job specification have to be determined. In our experience lack
of attention to such factors leads to the mould limiting the ability of the
injection moulding machine and preventing the process as a whole from
achieving its true potential.

Injection moulds should not be designed in isolation but should be part
of a team effort involving the product designer, the mould designer, the
mould maker and the injection moulder. Each partner must be aware of
the others’ part in the process as a whole. This handbook will, it is hoped,
be of some use to each of these partners.

P.S.C.
R.W.D.



Abbreviations

Elements

Al aluminium

Be beryllium

C carbon

Cr chromium

Co cobalt

Cu copper

Mn manganese

Mo molybdenum

Ni nickel

Pb lead

Si silicon

S sulphur

A% vanadium

W tungsten

Polymers

ABS acrylonitrile—butadiene—styrene
CA cellulose acetate

FEP fluorinated ethylene propylene
HIPS rubber modified polystyrene (=TPS)
LCP liquid crystal polymer

PA 6 nylon 6

PA 6,6 nylon 6,6

PA 11 nylon 11

PA 12 nylon 12

PAE polyarylate

PBT polybutylene terephthalate

PC polycarbonate

PE-HD high density polyethylene (HDPE)
PE-LD low density polyethylene (LDPE)
PES polyethersulphone

PMMA polymethyl methacrylate

POM polyacetal (acetal)



Xii

ABBREVIATIONS

PP polypropylene

PPO polyphenylene oxide (modified)
PPS polyphenylene sulphide

PS polystyrene

PSU polysulphone

PVC polyvinylchloride

PVC-P plasticised PVC

PVC-U unplasticised PVC (=UPVC)

SAN styreneacrylonitrile

TPS rubber modified polystyrene (=HIPS)
Miscellaneous

AISI American Iron and Steel Institute
BS British Standard

DIA diameter

DIN German standards

DRG drawing

ISI Swedish Standardisering Kommission
QA quality assurance
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1 Product and mould

1.1 Introduction

The mould impression is the part of the mould that accepts molten plastic
from the injection unit either directly via a sprue or via a sprue and
runner. It is in the impression that the molten plastic cools and assumes
the desired shape. In designing an impression to make a particular
product, a number of factors need to be considered. It is not simply a
matter of making the impression conform precisely to the product design.
Some factors, for example, are: the impression must be capable of being
filled as easily as possible; the moulding must be as free of stress as
possible; the plastic shrinks on cooling and the moulding must be
removable from the open mould. While the mould designer may be able
to allow for these factors in designing a mould impression to make a
product, the designer must be capable of appreciating the limiting factors
and, where necessary, must be able to advise the product designer of
difficulties and suggest remedies. The following sections outline the
salient factors which need to be considered.

1.2 Shrinkage

1.2.1 Mould shrinkage

All materials shrink on cooling due to thermal contraction. The shrinkage
of the plastic on cooling from the melt temperature to the mould
temperature is known, somewhat perversely, as the mould shrinkage.
The principal reason for mould shrinkage is thermal contraction which
is measured by the thermal expansion coefficient of the plastic. The
expansion coefficients of plastics materials are high compared with metals
(Table 1.1). Typically, a 100°C rise/drop in temperature will produce
an increase/decrease of between 0.001 and 0.02mm/mm depending
on the material. Although this is small, it should not be ignored.
Additionally, crystallisable thermoplastics shrink on crystallising, the
amount of additional shrinkage depending upon the amount of crystallinity
developed which in some polymers is very much dependent on the rate of
cooling. For example, PET hardly crystallises at all when cooled rapidly
unless it is seeded but slow cooling can produce up to about 50%



2 HANDBOOK OF THERMOPLASTICS INJECTION MOULD DESIGN

Table 1.1 Dimensional stability data

Material Thermal expansion Mould shrinkage =~ Water

(mm/mm K ! x 10 (%) absorp. (%)
ABS (rigid) 80 0.3-0.8 0.3
Acetal 80 2.0-3.5 0.2
Cellulose acetate 100 0.3-0.7 2-6
Fluorinated ethylene propylene 90 3.0-6.0 0
Nylon 6,6 120 1.5-2.0 1.5
Nylon 6 100 1.0-1.5 1.6
Nylon 11 150 1.2 0.4
Nylon 12 104 1.0 0.3
Polybutyleneterephthalate 90 1.5-2.0 0.2
Polycarbonate 70 0.6-0.8 0.16
Polyethylene (LD) 170 2.0-3.5 0.02
Polyethylene (HD) 120 2.0-3.5 0.01
Polymethylmethacrylate 85 0.1-0.8 0.35
Polypropylene 110 1.5-2.5 0.01
Polyphenylene oxide (modified) 55 0.5-0.7 0.1
Polystyrene (GP) 70 0.2-0.6 0.2
Polystyrene (rubber modified) 120 0.2-0.8 0.2
Polyethersulphone 55 0.6-0.8 0.15
Polyvinyl chloride (rigid) 55 0.1-0.5 0.05
Styrene acrylonitrile 70 0.2-0.5 0.3
Steel 11-13

The above are typical values for unfilled grades

crystallinity. The rate of cooling therefore determines the total amount of
shrinkage as well as the properties of the product.

The use of fillers (mineral powders, glass fibres, etc.) can reduce the
amount of shrinkage on moulding because they have much lower thermal
expansion coefficients. However, processability may be adversely affected
as well as dimensional stability.

It is common practice to quote a figure for mould shrinkage either
inmm/mm or as a percentage for plastics materials (Table 1.1). Such
figures should be regarded as indicative. The precise shrinkage observed
will depend on temperature drop, rate of cooling, shaping pressures and
anisotropy due to orientation.

Anisotropy arises primarily from molecular orientation produced
during flow (chapter 3). The consequence is that shrinkage is greater
in the flow (orientation) direction than in the cross-flow (transverse)
direction. The difference in shrinkage depends on the material and the
production methods. The inclusion of fibres also produces anisotropy.
Since mineral fibres (glass and carbon) shrink less than plastics, this tends
to negate the differential shrinkage of the plastic and at fibre loadings of
above about 20%, it is common to find that the differential is reversed,
i.e. shrinkage is greater in the transverse direction.
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In dimensioning the mould, the mould dimensions should be slightly
oversized compared with the product dimensions. The variability of
shrinkage means that product tolerances should be as generous as other
requirements permit otherwise tight control of the moulding process is
required. Since amorphous materials shrink less than semi-crystalline
materials, these materials are preferred where close product tolerances
are necessary.

Other shrinkage factors which may need to be considered in dimensioning
the mould are briefly listed below.

(a) The mould may not be at room temperature. Allowance should
be made for the cooling of the moulding to room temperature. For
amorphous plastics, this is simply a matter of thermal contraction
and this may be estimated from the thermal expansion coefficient.
Semi-crystalline materials may contract more due to further crystal-
lisation on cooling.

(b) Even when cooled in the mould to room temperatures, semi-
crystalline materials may shrink over a period of time after ejection
as a result of further crystallisation. This is known as post-mould
shrinkage which, though usually small (less than 0.01%), may have
to be taken into account for high precision products. One remedy is
to ensure that crystallisation is completed during moulding by, for
example, increasing the cooling time.

(c) If the product is dimensioned for service at elevated temperatures,
this may need to be taken into account when deciding upon mould
dimensions.

1.2.2  Sinking

The moulding of thermoplastics in thick sections presents other shrinkage
problems, especially where mould shrinkage is high (e.g. highly crystalline
materials). In a thick section of an injection moulded product, for
example, the outside layers in contact with the cold mould cool rapidly.
The inside layers remain hot for longer because polymers are poor
thermal conductors. As the centre layers cool, shrinkage occurs (often to
a greater extent than the quickly cooled outer layers) and in doing so
pulls the outer layers away from the mould wall causing sinking at the
surface (Figure 1.1a).

In extreme cases (e.g. polypropylene) cavitation can occur as well as,
or instead of, sinking. The inside of the cooling section shrinks away from
itself producing voids or cavities which may result in essentially hollow
centred sections which severely weakens the product (Figure 1.1b).
Sinking is reduced by

® reducing part thickness;
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Figure 1.1 Showing forces producing sinking at the moulding surface and cavitation inside
the moulding when thick sections are cooled from the melt temperature.

® incorporating fillers;
® maintaining an internal pressure during cooling.

The most convenient way of producing an internal pressure is by the
incorporation of a gas in the melt. This can be done by dispersing a
blowing agent (e.g. an azo-carbamide) into the polymer which decomposes
during processing to provide the gas (nitrogen). The product is a slightly
cellular moulding. An alternative is the gas (nitrogen) injection technique
(e.g. Cinpress) which forms a tunnel of gas through the centre of thick
sections. An advantage of the latter is that surface quality is not impaired
through the escape of gas through the moulding surface as happens with
blowing agents.

1.2.3 Internal stress and warping

When thick sections are moulded, rapid changes in temperature can cause
thermally induced stresses due to differential expansion. If surface layers
cool faster than the interior through poor conduction, the contraction of
the surface will be greater than the interior thereby setting up stresses
which can lead to warping and even failure in service at less than predicted
stress levels. Thermal stresses induced during manufacture can be
reduced by annealing during moulding or after moulding.

Internal stresses can also arise from flow induced anisotropy. Anisotropy
arises from two principal sources: molecular orientation and the alignment
of directional fillers such as fibres. Molecular orientation results from
melt flow where the polymer chains are forced to change from their
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random coil state (ideally) to an elongated coil. The degree of elongation
depends primarily upon the nature of the polymer and the shear rate
(stress) experienced in flow. Shear rate depends on channel dimensions
and increases as the channel cross-section decreases. Typical shear rates
in practice are 1000-5000 s~ ' in injection moulding. The degree of coil
distortion can be quite marked. On emerging from the channel (e.g.
gate), the elongated coil will attempt to revert to the relaxed random coil
state and if it can do so, the product will be isotropic. In practice, this
ability to revert is hindered by

® loss of mobility in the polymer due to cooling;
e continued flow into the mould cavity.

The result is frozen molecular orientation in the general direction of flow.
The degree of orientation is low compared with that which is deliberately
induced in fibre and film production, but it can nevertheless be significant.

Frozen orientation produces stress which weakens the product and
causes failure at lower applied stress levels since cracks can propagate
more easily in the flow direction. However, stiffness is increased in the
flow direction. Frozen orientation can also lead to dimensional instability.
The application of heat induces molecular relaxation which produces
warping or even gross distortion.

Molecular anisotropy can be minimised by using generous flow channels,
low shear rates and slow cooling. Thin sections should be avoided. Fibres
(usually glass) of length 0.3—-0.5 mm incorporated into thermoplastics as
reinforcements increase the anisotropic effects described above because
the fibres tend to orientate in the same flow direction as the polymer
chains. Mineral powders of aspect ratio greater than unity (e.g. talc) also
contribute to anisotropy but less so than fibres.

1.3 Wall thickness

Component wall thickness requires several competing factors to be taken
into consideration. The mechanical requirements of a section may dictate
a certain wall thickness. However, thick sections should be avoided
because of the requirement to remove heat efficiently (the cooling part of
the cycle is the time that limits the production rate), the need to avoid
sinking, cavitation and warping. Thin sections should be avoided because
of the need for the melt to flow easily to fill the cavity. Economic factors
often dictate the final wall thickness selected (amount of material used,
etc.). If a wall is too thin for the strength properties required, the wall
can be reinforced with ribs (see below). Flow characteristics vary from
one plastics material to another and Table 1.2 gives typical values for wall
thicknesses.



