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Preface to the First Edition

AT THE TIME THE FIRST VOLUME OF THIS BOOK WAS WRITTEN (BETWEEN 1941
and 1948) the interest in probability was not yet widespread. Teaching was
on a very limited scale and topics such as Markov chains, which are now
extensively used in several disciplines, were highly specialized chapters of
pure mathematics. The first volume may therefore be likened to an all-
purpose travel guide to a strange country. To describe the nature of
probability it had to stress the mathematical content of the theory as well
as the surprising variety of potential applications. It was predicted that
the ensuing fluctuations in the level of difficulty would limit the usefulness
of the book. In reality it is widely used even today, when its novelty has
worn off and its attitude and material are available in newer books written
for special purposes. The book seems even to acquire new friends. The
fact that laymen are not deterred by passages which proved difficult to
students of mathematics shows that the level of difficulty cannot be measured
objectively; it depends on the type of information one seeks and the details
one is prepared to skip. The traveler often has the choice between climbing
a peak or using a cable car.

In view of this success the second volume is written in the same style.
It involves harder mathematics, bu* most of the text can be read on different
levels. The handling of measure theory may illustrate this point. Chapter
IV contains an informal introduction to the basic ideas of measure theory
and the conceptual foundations of probability. The same chapter lists the
few facts of measure theory used in the subsequent chapters to formulate
analytical theorems in their simplest form and to ayoid futile discussions of
regularity conditions. The main function of measure theory in this connection
is to justify formal operations and passages to the limit that would never be
questioned by a non-mathematician. Readers interested primarily in practical
results will therefore not feel any need for measure theory.

To facilitate access to the individual topics the chapters are rendered as
self-contained as possible, and sometimes special cases are treated separately
ahead of the general theory. Various topics (such as stable distributions and
renewal theory) are discussed at several places from different angles. To
avoid repetitions, the definitions and illustrative examples are collected in
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chapter VI, which may be described as a collection of introductions to the
subsequent chapters. The skeleton of the book consists of chapters V, VIII,
and XV. The reader will decide for himself how much of the preparatory
chapters to read and which excursions to take.

- Experts will find new results and proofs, but more important is the attempt
to consolidate and unify the general methodology. Indeed, certain parts of
probability suffer from a lack of coherence because the usual grouping and
treatment of problems depend largely on accidents of the historical develop-
ment. In the resulting confusion closely related problems are not recognized
as such and simple things are obscured by complicated methods. Consider-
able simplifications were obtained by a systematic exploitation and develop-
ment of the best available techniques. This is true in particular for the
proverbially messy field of limit theorems (chapters XVI-XVII). At other
places simplifications were achieved by treating problems in their natural
context. For example, an elementary consideration of a particular random
walk led to a generalization of an asymptotic estimate which had been
derived by hard and laborious methods in risk theory (and under more
restrictive conditions independently in queuing).

I have tried to achieve mathematical rigor without pedantry in style. For
example, the statement that 1/(1 + &) is the characteristic function of
3e17l seems to me a desirable and legitimate abbreviation for the logically
correct version that the function which at the point & assumes the value
1/(1 + £2) is the characteristic function of the function which at the point
x assumes the value 3e#. :

I fear that the brief historical remarks and citations do not render justice
“to the many authors who contributed to probability, but I have tried to give
" credit wherever possible. The original work is now in many cases superseded

by newer research, and as a rule full references are given only to papers to
which the reader may want to turn for additional information. For example,
no reference is given to my own work on limit theorems, whereas a paper
describing observations or theories underlying an example is cited even if it
contains no mathematics.® Under these circumstances the index of authors
gives no indication of their importance for probability theory. Another
difficulty is to do justice to the pioneer work to which we owe new directions
of research, new approaches, and new methods. Some theorems which were
considered strikingly original and deep now appear with simple proofs
among more refined results. It is difficult to view such a theorem in its
historical perspective and to realize that here as elsewhere it is the first step
that counts.

ages SRR o

1 This system was used also in the first volume but was misunderstood by some subsequent
writers; they now attribute the methods used in the book to earlier scientists who could
not have known them. .
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Introduction

THE'CHARACTER AND ORGANIZATION OF THE BOOK REMAIN UNCHANGED, BUT
the entire text has undergone a thorough revision. Many parts (Chapter
XVII, in particular) have been completely rewritten and a few new sections
have been added. At a number of places the exposition was simplified by
streamlined (and sometimes new) arguments. Some new material has been
incorporated into the text.

While writing the first edition I was haunted by the fear of an excessively
long volume. Unfortunately, this led me to spend futile months in shortening
the original text and economizing on displays. This damage has now been
repaired, and a great effort has been spent to make the reading easier.
Occasional repetitions will also facilitate a direct access to the individual
chapters and make it possible to read certain parts of this book in con-
junction with Volume 1. .

Concerning the organization of the material, see the introduction to the
first edition (repeated here), starting with the second paragraph.

I'am grateful to many readers for pointing out errors or omissions. I
especially thank D. A. Hejhal, of Chicago, for an exhaustive and penetrating
list of errata and for suggestions covering the entire book.

January 1970 WILLIAM FELLER
Princeton, N.J.
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Abbreviations and Conventions

i
Epoch.

Intervals

RI, R2, R*
1

>
nand N

0, o, and ~.

S (%) Uidz}.

is an abbreviation for if and only if.

This term is used for points on the time axis, while time is
reserved for intervals and durations. (In' discussions of
stochastic processes the word “times” carries too heavy a
burden. The systematic use of “epoch,” introduced by
J. Riordan, seems preferable to varying substitutes such as
moment, instant, or point.)
giad 2 — ;

are denoted by bars: a, b is an open, a, b a closed interval;

half-open intervals are denoted by a, b| and a,b. This
notation is used also in higher dimensions. The pertinent
conventions for vector notations and order relations are
found in V,1 (and also in IV,2). The symbol (a,b) is
reserved for pairs and for points.

stand for the line, the plane, and the r-dimensional Cartesian
space.

refers to volume one, Roman numerals to chapters. Thus
1; XI,(3.6) refers to section 3 of chapter XI of volume 1.
indicates the end of a proof or of a collection of examples.
denote, respectively, the normal density and distribution
function with zero expectation and unit variance.

Let u and » depend on a parameter = which tends, say,
to a. Assuming that v is positive we write

u= 0(@) = remains bounded
u=o() if - =,
u~v - — 1.

For this abbreviation see V,3.

Regarding Borel sets and Baire functions, see the introduction to chapter V.
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