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Preface for the ESP series in
Photochemical and Photobiological Sciences

“It’s not the substance, it's the dose which makes something poisonous!” When
Paracelsius, a German physician of the 14" century made this statement he
probably did not think about light as one of the most obvious environmental
factors. But his statement applies as well to light. While we need light for
example for vitamin D production too much light might cause skin cancer. The
dose makes the difference. These diverse findings of light effects have attracted
the attention of scientists for centuries. The photosciences represent a dynamic
multidisciplinary field which includes such diverse subjects as bchavioral
responses of single cells, cures for certain types of cancer and the protective
potential of tanning lotions. It includes photobiology and photochemistry.
photomedicine as well as the technology for light production, filtering and
measurement. Light is a common theme in all these areas. In recent decades a
more molecular centered approach changed both the depth and the quality of
the theoretical as well as the experimental foundation of photosciences.

An example of the relationship between global environment and the biosphere
is the recent discovery of ozone depletion and the resulting increase in high
energy ultraviolet radiation. The hazardous effects of high energy ultraviolet
radiation on all living systems is now well established. This discovery of the
result of ozone depletion put photosciences at the center of public interest
with the result that, in an unparalleled effort, scientists and politicians worked
closely together to come to international agreements to stop the pollution of the
atmosphere.

The changed recreational behavior and the correlation with several diseases
in which sunlight or artificial light sources play a major role in the causation of
clinical conditions (e.g. porphyrias, polymorphic photodermatoses, Xerodernua
pigmentosum and skin cancers) have been well documented. As a result, in
some countries (e.g. Australia) public services inform people about the poten-
tial risk of extended periods of sun exposure every day. The problems are often
aggravated by the phototoxic or photoallergic reactions produced by a variety
of environmental pollutants. food additives or therapeutic and cosmetic drugs.
On the other hand, if properly used, light-stimulated processes can inducc
important beneficial effects in biological systems, such as the elucidation of
several aspects of cell structure and function. Novel developments arc centered
around photodiagnostic and phototherapcutic modalities for the treatment of
cancer, artherosclerosis, several autoimmune diseascs, neonatal jaundice and
others. In addition, classic research areas such as vision and photosynthesis are
still very active. Some of these developments are unique to photobiology. since
the peculiar physico-chemical properties of electronically excited biomolecules
often lead to the promotion of reactions which are characterized by high levels
of selectivily in space and time. Besides the biologically centered arcas, techni-
cal developments have paved the way for the harnessing of solar energy to
produce warm water and electricity or the development of environmentally
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friendly techniques for addressing problems of large social mmpact (e.g. the
decontamination of polluted waters). While also in use in Western countries,
these techniques are of great interest for developing countries.

The European Society for Photobiology (ESP) is an organization for
developing and coordinating the very different fields of photosciences in terms
of public knowledge and scientific interests. Due to the ever increasing demand
for a comprehensive overview of the photosciences the ESP decided to initiate
an encyclopedic series, the “Comprehensive Series in Photochemical and
Photobiological Sciences™. This series is intended to give an in-depth coverage
over all the very different fields related to light effects. It will allow investigators,
physicians, students, industry and laypersons to obtain an updated record of the
state-of-the-art in specific fields, including a ready access to the recent literature.
Most importantly, such reviews give a critical evaluation of the directions that
the field is taking, outline hotly debated or innovative topics and even suggest
a redirection if appropriate. It is our intention to produce the monographs
at a sufficiently high rate to generatc a timely coverage of both well established
and emerging topics. As a rule, the individual volumes are commissioned:
however, comments, suggestions or proposals for new subjects are welcome.

Donat-P. Hider and Giulio Jori
Spring 2002



Volume preface

Light is one of the most important environmental factors for living organisms,
providing them in the case of photosynthetic organisms with energy, and infor-
mation about their surroundings such as day and night cycles. This informa-
tion is then used either to change behaviour or physiology. Therefore it is not
surprising that, in all kingdoms, most species are able to sense light through
so-called sensory photoreceptors. However, these photoreceptors are not only
able to distinguish between light on and light off, but together can also use the
total information that is present in the light. This information includes (i) the
irradiance, (i1) the colour or spectral distribution, (iii) the direction of light,
and (1v) the polarisation of light.

In principle, the irradiance can be measured by determining how often
the photoreceptor is excited during a specified unit of time. This, of course,
depends on the absorption cross section of the photoreceptor and how fast it
reaches its ground state after excitation. The colour, or wavelength, of the
photon can be sensed either by a complex photoreceptor such as phytochrome
or by the combination of different photoreceptors. The absorption spectrum of
the photoreceptor (and in particular the chemical nature of its chromophore)
determines whether the photon can be detected. The ability to sense the direc-
tion of light can be governed by measuring a light gradient within the cell
or — in multicellular organisms — within a tissue which depends on comparing
light intensities in space. The movement of organisms through areas of differ-
ent light intensity can also be used to sense the direction of light by measuring
changes in light intensity over time. The ability to sense the polarisation of
light probably depends on a fixed orientation of the photoreceptor (e.g. at
membranes).

All photoreceptors known to date consist of the following: A protein moiety
and one or several chromophore(s) which are covalently or non-covalently
bound to the protein. If additional photoreceptors are identified in the future,
it 1s very unlikely that they will disobey this rule since the protein by itself
is not able to absorb light (at least in the visible region) and thus needs the
chromophore. In principle, the chromophore can also originate from the
protein as for the green fluorescent protein although this is not a sensory
photoreceptor. The chromophore, with its conjugated n-electron system, can
be excited with photons of longer wavelengths, or lower energy, such as those
present in the visible region (400-760 nm). The protein moiety is required to
transduce the primary light signal to downstream components. A possible
exception to this rule could be UV-B photoreceptors, which have not been
characterised at the molecular level so far.

It might be a bit surprising that only a small number of chromophore
classes have becen found in photoreceptors. However, one can argue from this
small number that only a few chromophores are particularly well suited for
photoreceptor function. These chromophore classes are: retinals, present in
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rhodopsins; linear tetrapyrroles, present in phytochromes and related photo-
receptors from bacteria; thiol-ester linked 4-OH-cinnamic acid, present in
xanthopsins (with the photoactive yellow protein as the archetype of this
family); the flavins FAD and FMN, present in cryptochromes and photo-
tropins, respectively; and the pterin 5,10-methenyltetrahydrofolate, present as a
second chromophore in cryptochromes. Whereas some photoreceptor families
have a wide distribution, such as the rhodopsins that are present in Bacteria,
Archea, and Eukarya, others seem to have a very limited distribution, such as
the phototropins that, so far, have only been found in plants. However, very
recently phototropin-like proteins were identified in Bacteria [A. Losi et al.
(2002). Biophys. J., 82, 2627-26349]. Further research might change this
picture even more, an example being the phytochromes, which were originally
thought to be typical plant photoreceptors. In recent years, genome projects
have led to the identification of photoreceptors in cyanobacteria and even in
non-photosynthetic eubacteria, which are related to phytochromes. It is also
likely that additional photoreceptors will be found in the future. The progress
in identifying novel photoreceptors is seen, for cxample, in the case of the plant
blue-light photoreceptors. Before 1993, none were molecularly characterised
or cloned, but with the use of molecular biology and genetic methods both
the cryptochromes and the phototropins were then identified within a short time
period. In the meantime, interacting partner proteins had already been found.
well-characterised and, for phototropin, a photocycle had been demonstrated.
Shortly after the discovery of cryptochromes in plants they were also identified
in animals and humans through characterisation of mutants in circadian
entrainment (Drosophila) and from the results of genome projects (human).

While writing this book, a novel blue-light receptor was described [M. Iseki
et al. (2002). Nature, 415, 1047-1051], which mediates the photoavoidance
response in the unicellular flagellate Euglena gracilis. This blue-light receptor
is a flavin-containing adenylyl cyclase and thus represents the third class of
blue-light receptors identified within one decade.

Photobiology and research on photoreceptors and light-signalling is an
interdisciplinary field using a broad range of methods such as action spectros-
copy, various methods for protein purification, the whole range of molecular
biological and genetic methods, and uncountable numbers of spectroscopic
methods from absorption and fluorescence spectroscopy to X-ray diffraction
for solving the structure of photoreceptors. Intimate knowledge of the struc-
ture and function of photoreceptors can thus only be reached through the
combined effort of scientists from physics, chemistry and biology.

As outlined above, some photoreceptors have been known for many decades
whereas others have been identified very recently. It is thus not surprising that
the depth of knowledge and understanding of photoreceptor function. structure
and signalling s quite different for the various photoreceptors. For example,
rhodopsins and xanthopsins are already very well understood at the atomic
level, whereas structural data still seems far away for other photoreceptors.
In contrast, the structure and the photocycle of photoactive yellow protein is
very well known but, still, the physiological role of this photoreceptor is not
well understood.
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Such differences in our knowledge of the structure, photochemistry, signal-
ling and physiological responses of the different photoreceptors is, of course,
also reflected in the twelve chapters of this book. However, | believe that this
is not a disadvantage but reflects the current status of photorcceptor and
light-signalling analysis, and demonstrates the broad range of experimental
approaches towards one goal, which is the full understanding of photoreceptor
function all the way down to the atomic level.

The chapters of this book cover all known photoreceptors, with the exception
of the above-mentioned Euglena blue-light receptor and those candidates for
which photoreceptor function has not unambiguously been shown. Examples
for such candidates exist in fung.

[ am aware that much more knowledge about photoreceptors and light
signalling will be available after publication of this book, due to the very fast
progress in this field. Consequently, the authors have updated their chapters
even during editing so that most of the very recent results are included. I'm
very happy and grateful for the involvement of the authors in making it pos-
sible for all of the chapters to be written by leading experts in their respective
fields. 1 thank the authors for the time they have invested in writing their
chapters and in answering the burning questions from the editor.

Finally, it is my hope that this book will not only be of worth to experts
but that it can also attract biology, chemistry and physics students to this
fascinating and interdisciplinary rescarch field.

Alfred Batschauer
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PEC, phycocrythrocyanin
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