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INTRODUCTION

This introductory book is written for the Pascal programmer who wants
to learn C using microcomputer implementations. While the material caters
to these two languages in general, specifics and examples are presented based
on two popular Pascal and C implementations: Turbo Pascal (version 4) and
Turbo C (version 1.5 and up).

The reader is assumed to be at least moderately familiar with program-
mingin Pascal. Thebasic presentation strategy employs listings in Pascal and
their equivalent versions in C. Learning by comparing similar listings of the
two languages enables the reader to draw on his or her experience as a Pascal
programmer. This permits the reader to learn about the similarities and
differences between the two languages and gradually develop a working
knowledge of C. To accomplish this goal, simple (but not too trivial), short, and
easy-to-read Pascal programs are generally used. The Pascal source code
allows the reader to understand in more depth the task of the equivalent C
listing. Throughout the chapters there are special notes for programming in
C, as well as Pascal-to-C translation hints.
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CHAPTER

]

Why Learn C?

THE ORIGIN OF C

C is a language that has come of age. Its roots go back to the BCPL language,
developed by Martin Richards, and the B language, developed by Kenneth
Thompson in 1970. C itself was developed for and implemented under
UNIX™, by Dennis Ritchie, at Bell Laboratories, and first ran on a DEC PDP-
11™ in the early 1970s. C was the first high-level assembler (that is, a cross
between an assembler and a high-level language) that was successfully used
to port UNIX over to different machines.

The ANSI Standard for C

In 1978, Prentice-Hall published The C Programming Language by, Brian
Kernighan and Dennis Ritchie. This book described the C version accompany-
ing the UNIX version 5. Dubbed the K&R definition, the book provided a de
facto language reference, despite the fact that no ANSI standard existed for
C in the seventies. In 1983, an ANSI standard committee was formed to look
into the issue of defining a standard for C. In 1987, the committee completed
its work, introducing a number of modifications over the K&R definition. This
book looks at the ANSI standard and not the K&R definition.
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The Dual Nature of C

Using C to write operating systems (like UNIX and MS-DOS®, to name a few)
draws from its powerful features as a high-level assembler. Essentially, C is
a small-core language with no predefined I/O routines whose compilers are
notorious for producing fast and tight code. As a structured high-level
assembler, C enjoys two natures, depending on the type of application for
which it is used.

C as a High-Level Structured Language

You can use C as a high-level language and take advantage of its support for
extended numeric precision, user-definable record structures, powerful op-
erators, loops, and decision-making constructs. Consequently, high-level
applications can be developed in various fields, such as statistics, engineer-
ing design, accounting, and database management. As a high-level language,
C is compared with other similar, well-known languages, such as Pascal,
Modula-2, and Ada.

C: The High-Level Assembler

On the other hand, you can employ the power of C to perform advanced data
manipulation and low-level access and to implement some unusual program-
mingtricks. C gives you the freedom to perform these tasks, assuming that you
know what you are doing. Compared to Pascal, C removes programming guard
rails and puts more responsibility on the programmer’s shoulders. Thus, C can
be used to develop many low-level applications, such as operating systems,
compilers, interpreters, and word processors.

The Journey From Pascal To C

Why migrate from Pascal to C? Why change from one structured language to
another? Is it worth it? These are some of the questions that Pascal program-
mers might ask in contemplating learning C.

As a Pascal programmer, you developed the skill of crafting your
programs in a structured, modular manner. The more a software developer
programs in a language, the more programming tricks he or she discovers.
However, there is usually an asymptotic limit that is reached, beyond which
any language cannotbe pushed. You can rewrite Pascal programs to run faster
or compile into smaller code, until further refinement is either not possible or
not feasible. The above reason points to one of the major reasons why high-
level programmers migrate to C: to develop programs that have more speed
and/or smaller code.

The good news for you as a Pascal programmer is that you already have
the experience of using a structured language. This makes learning C easier



