JWILEY

INTRODUCING

t\i

CTO PASCAL
PROGRAMMERS

)
<
b=
b=
<
.
7
s
b=
<
Z




9060021%

Introducing C
To Pascal Programmers

NAMIR SHAMMAS

ES060021

Il

WILEY

John Wiley & Sons, Inc.
New York ¢ Chichester ¢ Brisbane ¢ Toronto ¢ Singapore



Publisher: Stephen Kippur

Editor: Therese A. Zak

Managing Editor: Corinne McCormick

Electronic Book Production: Publishers Network, Morrisville, PA

This publication is designed to provide accurate and authoritative informa-
tion in regard to the subject matter covered. It is sold with the understand-
ing that the publisher is not engaged in rendering legal, accounting, or
other professional services. If legal advice or other expert assistance is
required, the services of a competent proffesional person should be sought.
FROM A DECLARATION OF PRINCIPLES JOINTLY ADOPTED BY A
COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COM-
MITTEE OF PUBLISHERS.

Copyright © 1988 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted
by section 107 or 108 of the 1976 United States Copyright Act without the
permission of the copyright owner is unlawful. Requests for permission or
further information should be addressed to the Permission Department,
John Wiley & Sons, Inc.

Librry of Congress Cataloging in Publication Data:

Shammas, Namir Clement, 1954~
Introducing C to pascal programmers / Namir Clement Shammas.
p. cm.

ISBN 0—471-609080 (pbk.)

1. C (Computer program language) I. Title.
QA76.73.C1547 1988
005.13'3—dc19

Printed in the United States of America
88 89 10 9 8 7 6 5 4 3 2 1



Introducing C
To Pascal Programmers




Related Titles of Interest

Turbo Pascal® DOS Utilities, Alonso
Programming with Macintosh Turbo Pascal®, Swan
Turbo C® Survival Guide, Miller and Quilici

Advanced Turbo C® Programmer's Guide, Mosich, Shammas,
Flamig

Turbo C® DOS Utilities, Alonso

Turbo C® and Quick C® Functions: Building Blocks for Efficient
Code, Barden

The Turbo Programmer's Reference: Language Essentials,
Weiskamp

Quick C® DOS Utilities, Alonso

C Programming Reference: An Applied Prospective, Miller and
Quilici

C Wizard's Programming Reference,' Schwaderer

Introducing C to Pascal Programmers, Shammas

DOS Productivity Tips and Tricks, Held



To my former colleague Riadh Al-Sabti,
wherever he may be, who taught me
that learning FORTRAN, and any other
programming language is fun.



TRADEMARKS

Ada is a registered trademark of the U.S. Government, Ada Joint Program
Office.

DEC PDP-11 is a trademark of Digital Equipment Corporation.
MS-DOS is a trademark of Microsoft Corporation.

PC-DOS is a trademark of International Business Machines.
Turbo C is a registered trademark of Borland International.
Turbo Pascal if a registered trademark of Borland International.

UCSD-Pascal is a trademark of the regions of the University of California,
San Diego.

UNIX is a trademark of AT&T.
WordStar is a registered trademark of MicroPro International Corporation.



LISTINGS

Demonstration Pascal Listing
number page
Greetings 3.1 18
Greetings
Simple data type 34 21
Constants 3.6 24
Constants
Formatted output
Character I/0 3.10 32
Character I/0 3.11 33
Character I/0 3.13 34
Arithmetic operators 4.1 37
Arithmetic operators 4.3 41
Arithmetic operators
Character operators 4.6 44
sizeof operator 4.8 45
Type casting 410 48
Relational operators 412 52
Bit-manipulation operators 414 56

Bit-manipulation operators

Using #define
Using #define
Conditional compilation

C Listing
number page
3.2 19
3.3 20
3.5 22
3.7 25
3.8 26
3.9 30
3.12 33
3.14 34
4.2 38
44 42
4.5 43
4.7 44
4.9 46
411 49
413 54
415 56
4.16 57
5.1 63
5.2 69
5.3 72

xi



xii INTRODUCING C TO PASCAL PROGRAMMERS

Demonstration Pascal Listing C Listing
number page number page
if statement 6.1 77 6.2 77
if-else statement 6.3 79 6.4 80
nested if-else statements 6.5 81 6.6 82
Nested if-else statements 6.7 83 6.8 84
switch statement 6.9 87 6.10 88
switch statement 6.11 89
switch statement 6.12 90 6.13 91
switch statement 6.14 92
for loop 71 96 7.2 97
for loop 7.3 98 7.4 98
Nested for loops 7.5 99 7.6 101
Open loop 7.7 103 7.8 103
Exiting for loops 7.9 105
do-while loop 7.10 106 7.11 106
do-while loop 7.12 108 7.13 109
while loop 7.14 111 7.15 112
while loop 7.16 114
while loop 717 115 7.18 116
Word count 7.19 117 7.20 118
Square function 8.1 122 8.2 122
Solve root pf math function 8.3 124 8.4 125
Functions replacing macros 8.5 127
void functions 8.6 132
Recursive function 8.7 136 8.8 136
Static variables 9.1 140 9.2 141
Scope of variables 9.3 145 9.4 145
Scope of variables 9.5 146
Pointers to simple data types 9.6 151 9.7 152
Simple array 9.8 154 9.9 155
Simple array 9.10 156 9.11 157
Two-dimensional array 9.12 159 9.13 159
Initializing a C matrix 9.14 161
Accessing an array with a pointer 9.15 163
Accessing an array with a pointer 9.16 164
Sieve benchmark 9.17 165 9.18 166
Sieve benchmark 9.19 166
Accessing a matrix with a pointer 9.20 168

Translate characters of a string 9.21 170 9.22 170



CONTENTS

xiii

Demonstration

Pascal Listing

C Listing

Translate characters of a string
String manipulation

Enumerated types

Enumerated types

Sorting with structures

Sorting with nested structures
Bitfields

Sorting with pointers to structures
Sorting with pointers to structures
Complex math with unions
Complex math with unions

Far pointers and direct video output
Far pointers and direct video output

Passing arrays to functions
Passing arrays to functions
Passing strings to functions
Passing structures to functions
Passing arrays by reference
Passing strings to functions
Passing structures

Matrix inversion benchmark
Binary tree benchmark

Binary tree benchmark

Quick sort

Interactive Shell sort
Accessing command line arguments
Pointer to a function

Pointer to a function

Pointer to a function

Variable number of arguments

WordStar to ASCII converter
(character I/O)

File printer

(string I/O)

File Lister

(string I/O)

Write strings to sequential file
Read strings from sequential file

number page

9.23
9.24

101

10.4
10.6

10.9

10.12

111
11.3
114
11.6
11.8
11.10
11.12
11.14
11.16
11.18
11.20
11.22
11.24

121

12.3

12.5

12.7
12.9

171
172

189

196
201

206

213

224
226
227
230
232
236
238
241
245
248
251
254
260

283

289

292

296
302

number page

9.25

10.2
10.3
10.5
10.7
10.8
10.10
10.11
10.13
10.14
10.15
10.16

11.2

11.5

11.7

11.9

11.11
11.13
11.15
11.17
11.19
11.21
11.23
11.25
11.26
11.27
11.28
11.29

12.2

12.4

12.6

12.8
12.10

173

190
192
197
202
204
208
209
214
216
219
219

225

228
231
233
237
239
242
246
249
252
256
261
263
268
272
276

285

290

293

298
303



xiv INTRODUCING C TO PASCAL PROGRAMMERS

Demonstration Pascal Listing C Listing
number page number page
Write structure to sequential file 12.11 308 12.12 310
Read structure from sequential file 12.13 314 12.14 315
Write union to sequential file 12.15 318 12.16 320
Read union from sequential file 12.17 324 12.18 326
Stream I/O error 12.19 328

Copy file 12.20 333 12.21 334



INTRODUCTION

This introductory book is written for the Pascal programmer who wants
to learn C using microcomputer implementations. While the material caters
to these two languages in general, specifics and examples are presented based
on two popular Pascal and C implementations: Turbo Pascal (version 4) and
Turbo C (version 1.5 and up).

The reader is assumed to be at least moderately familiar with program-
mingin Pascal. Thebasic presentation strategy employs listings in Pascal and
their equivalent versions in C. Learning by comparing similar listings of the
two languages enables the reader to draw on his or her experience as a Pascal
programmer. This permits the reader to learn about the similarities and
differences between the two languages and gradually develop a working
knowledge of C. To accomplish this goal, simple (but not too trivial), short, and
easy-to-read Pascal programs are generally used. The Pascal source code
allows the reader to understand in more depth the task of the equivalent C
listing. Throughout the chapters there are special notes for programming in
C, as well as Pascal-to-C translation hints.



CONTENTS

Chapter 1: Why Learn C?
The Origin of C

Chapter 2: A Quick Tour of C

General C Program Components
Basic Data Types and Variables
Operators

Constants

Basic Console /O
Decision-Making

Loops

Arrays

Strings

User-Defined Data Types
Functions

File VO

Chapter 3: Getting Started

A Simple C Program
Simple Data Typesin C
Constants In C

Basic Console /O in C
Chapter Summary

Chapter 4: C Operators

Using Various Operators to Create Expressions

Arithmetic Operators
Increment and Assignment Operators

IO B =



viii INTRODUCING C TO PASCAL PROGRAMMERS

Character Operators 43
Sizing Data Objects 45
Type Casting 47
Relational Operators and Conditional Expressions 51
Bit-Manipulation Operators 55
Comma Operator 58
Chapter Summary 60
Chapter 5: The C Preprocessor andCompiler Directives 62
The C Preprocessor 62
Predefined Macros 71
Compiler Directives 71
Chapter Summary 73
Chapter 6: Decision-Making 75
The if Statement 75
The switch Statement 85
Chapter Summary 93
Chapter 7: Loops 95
Loops: An Overview 95
The for Loop 96
Exiting Loops 104
The do-while Loop 105
The While Loop 111
Chapter Summary 119
Chapter 8: Simple Functions 120
Overview 120
C Functions 120
Making a C Function Work as a Procedure 131
Recursive Functions 135
Exiting Functions 137
Chapter Summary 137
Chapter 9: Pointers, Arrays, and Strings 139
Storage Classes 139
Scope of Variables 144
Pointers to Simple Data Types 148
Arrays in C: An Overview 153
One-Dimensional Arrays 153
MultiDimensional Arrays 157
Accessing Arrays with Pointers 161
Stringsin C 169
Chapter Summary 182
Chapter 10: Enumerated and Structured Data Types 185
Type Redefinition in C 185
Enumerated Data Types 187
Structured Data Types 193
Accessing Arrays of Structures 196

Bitfields in C 203



CONTENTS

ix

Using Pointers to Structures
Unions and Pointers to Unions
Far Pointers

Chapter Summary

Chapter 11: Advanced Functions

Using Arrays as Arguments

Using Strings as Arguments

Using Structures as Arguments

Passing Arguments by Reference Using Pointers
Passing Simple Variables and Simple Arrays
Passing Strings

Passing Structures

Passing Numeric Matrices

Passing Pointers to Dynamic Structures

More Array Sorting

Accessing the Command Line Arguments
Pointers to Functions

Functions with a Variable Number of Arguments
Chapter Summary

Chapter 12: Basic File /O

Modes of File /O in C

Character I/O

String I/O

Writing and Reading Numeric Data Using Sequential Files

Binary Stream I/O

Using Structures to Write and Read Numeric Data in Binary Streams
Using Unions with Random Access Binary Streams

Stream I/O Error

Basic Low-Level File I/O

Chapter Summary

Appendix A: C Escape Sequences

Appendix B: Formatted I/O String Control
Appendix C: Predefined Data Types in Turbo C
Appendix D: Operators in C

Appendix E: Memory Models for Turbo C

205
211
218
220

223

223
227
229
231
232
236
237
240
244
251
259
262
275
277

279

279
282
286
295
306
306
316
328
331
335

339
340
341
342
344



CHAPTER

]

Why Learn C?

THE ORIGIN OF C

C is a language that has come of age. Its roots go back to the BCPL language,
developed by Martin Richards, and the B language, developed by Kenneth
Thompson in 1970. C itself was developed for and implemented under
UNIX™, by Dennis Ritchie, at Bell Laboratories, and first ran on a DEC PDP-
11™ in the early 1970s. C was the first high-level assembler (that is, a cross
between an assembler and a high-level language) that was successfully used
to port UNIX over to different machines.

The ANSI Standard for C

In 1978, Prentice-Hall published The C Programming Language by, Brian
Kernighan and Dennis Ritchie. This book described the C version accompany-
ing the UNIX version 5. Dubbed the K&R definition, the book provided a de
facto language reference, despite the fact that no ANSI standard existed for
C in the seventies. In 1983, an ANSI standard committee was formed to look
into the issue of defining a standard for C. In 1987, the committee completed
its work, introducing a number of modifications over the K&R definition. This
book looks at the ANSI standard and not the K&R definition.



2 INTRODUCING C TO PASCAL PROGRAMMERS

The Dual Nature of C

Using C to write operating systems (like UNIX and MS-DOS®, to name a few)
draws from its powerful features as a high-level assembler. Essentially, C is
a small-core language with no predefined I/O routines whose compilers are
notorious for producing fast and tight code. As a structured high-level
assembler, C enjoys two natures, depending on the type of application for
which it is used.

C as a High-Level Structured Language

You can use C as a high-level language and take advantage of its support for
extended numeric precision, user-definable record structures, powerful op-
erators, loops, and decision-making constructs. Consequently, high-level
applications can be developed in various fields, such as statistics, engineer-
ing design, accounting, and database management. As a high-level language,
C is compared with other similar, well-known languages, such as Pascal,
Modula-2, and Ada.

C: The High-Level Assembler

On the other hand, you can employ the power of C to perform advanced data
manipulation and low-level access and to implement some unusual program-
mingtricks. C gives you the freedom to perform these tasks, assuming that you
know what you are doing. Compared to Pascal, C removes programming guard
rails and puts more responsibility on the programmer’s shoulders. Thus, C can
be used to develop many low-level applications, such as operating systems,
compilers, interpreters, and word processors.

The Journey From Pascal To C

Why migrate from Pascal to C? Why change from one structured language to
another? Is it worth it? These are some of the questions that Pascal program-
mers might ask in contemplating learning C.

As a Pascal programmer, you developed the skill of crafting your
programs in a structured, modular manner. The more a software developer
programs in a language, the more programming tricks he or she discovers.
However, there is usually an asymptotic limit that is reached, beyond which
any language cannotbe pushed. You can rewrite Pascal programs to run faster
or compile into smaller code, until further refinement is either not possible or
not feasible. The above reason points to one of the major reasons why high-
level programmers migrate to C: to develop programs that have more speed
and/or smaller code.

The good news for you as a Pascal programmer is that you already have
the experience of using a structured language. This makes learning C easier



