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INTERNATIONAL COLLOQUIUM ON
DIFFERENTIAL ANALYSIS

BOMBAY, 7-14 JANUARY 1964

REPORT

Ax International Colloquium on Differential Analysis was held
at the Tata Institute of Fundamental Research, Bombay, on
7-14 January 1964. The Colloquium was a closed meeting of experts
and of others seriously interested in differential analysis. It was
attended by 23 members, and 26 other participants, from France,
India, Japan, the Netherlands, Sweden, Switzerland, the United
Kingdom, and the United States.

The Colloquium was jointly sponsored, and financially supported,
by the International Mathematical Union, the Sir Dorabji Tata
Trust, and the Tata Institute of Fundamental Research. An
Organizing Committee consisting of Professor K. Chandrasekharan
(Chairman), Professor K. G. Ramanathan, Professor M. S.
Narasimhan, Professor Raghavan  Narasimhan, Professor
G. de Rham, and Professor D. Montgomery was in charge of the
scientific programme. Professor de Rham and Professor Montgomery
acted as representatives of the Union on the Organizing Committee.
The purpose of the Colloquium was to discuss recent developments
in some aspects of (i) the theory of differential equations,
(ii) analysis in the large and differential . geometry, and (iii) diffe-
rential topology.

The following nineteen mathematicians accepted invitations
to address the Colloquium :

Professor M. F. Atiyah, Professor R. Bott, Professor L. Garding,
Professor L. Hérmander, Professor J. J. Kohn, Professor
B. Malgrange, Professor Y. Matsushima, Professor J. W. Milnor,
Professor D. Montgomery, Professor C. B. Morrey, Jr., Professor
J. K. Moser, Professor M. S. Narasimhan, Mr. M. S. Raghunathan,
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Professor G. de Rham, Professor C. S. Seshadri, Professor S. Smale,
Professor D. C. Spencer, Professor R. Thom and Professor
A. Van de Ven.

Professor M. Morse, who was unable to accept the invitation
to attend the Colloquium, sent in a paper.

The Colloquium met in closed sessions. Eighteen lectures were
given. Each lecture lasted fifty minutes, followed by discussions.
Informal lectures and discussions continued during the week,
outside the official programme.

The social programme during the Colloquium week included a
ballet and dinner on 7 January; a show of cultural films on
8 January; a performance of Indian music on the Veena, and on
the Sitar, on 9 January; a performance of classical Indian dances
on 10 January; an excursion to Elephanta on 12 January; and a
violin recital followed by a dinner on 13 January.
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CONDITIONED DIFFERENTIABLE ISOTOPIES
By WILLIAM HUEBSCH' and MARSTON MORSE!

1. Introduction. The theorems on differentiable isotopies found in
recent papers, such as [6], [5] and the ““ Reduction Theorems” in §3
of [1] are inadequate for the purpose.of proving some of the more
recent theorems in differential topology. In particular the principal
theorem concerning the elimination of a pair of critical points, as
stated in [2], seems to require deeper Reduction Theorems and
differentiable isotopies. Theorem 1.3 of this paper is one such
theorem. This paper will establish Theorem 1.3 with an appropriate
background.

We refer to a euclidean n-space K, with rectangular coordinates
%y, ..., %,. The point x = (x,, ..., %,) can be considered a vector
with components equal to the respective coordinates of z. Let || z||
be the magnitude of z conceived as a vector. Corresponding to a
prescribed positive constant p set

D,={zek,||z| <p (1.0)
Given a subset ¥ of E, set B, —Y =°Y. Let 0 denote the origin
in B,. Let R denote the axis of reals.

For simplicity all differentiable mappings used in this paper will
be differentiable of class C®. It is clear that this condition could
be greatly relaxed.

DerFINITION. A differentiable mapping of E, onto E, which leaves
0 L °D, point-wise invariant, will be termed a mapping with domain of
identity 0 L °D,.

DrFINITION. Two diffeomorphisms whose domains of definition
include 0, will be said to be 0-related if their restrictions to some neigh-
borhood of the origin are identical.

t Work of Huebsch supported in part by the National Science Foundation
under NSF-G19884.

+ Work of Morse supported by the Air Force Office of Scientific Research
under AF-AFOSR-63-357.



2 WILLIAM HUEBSCH and MARSTON MORSE

Theorem 3.1 of [1] can be reformulated as follows. {Cf. [5] Lemma
8.1, and [6] Lemma 3.2.}

THEOREM 1.1. Let X be an open neighborhood of 0, and let
x = f(x) be a sense-preserving diffeomorphism of X into E, which
leaves 0 invariant.

Corresponding to a prescribed - positive constant p there exists a
diffeomorphism of E, onto E,, 0-related to f, with domain of identity
0u°D,.

To state an extension of Theorem 1.1 we recall a definition.

DEeriNITION. An isotopy H. Let X be an open subset of E,. A
diffeomorphism h of X into E, will be said to be differentiably isotopic
to a diffeomorphism k of X into E, if there exists a differentiable
mapping: :

H: X XxXR~—>E,; (%) >H(,?1) (1.1)
such that each partial mapping:
x - H(z, t) = H(z) (introducing H') (1.2)

18 a diffeomorphism of X into E,, and if H* =h for t < 0, and H* =k
for t>1. We then term H a differentiable isotopy of h into k, and
H the t-section of H.

The following extension of Theorem 3.1 of [1] is a consequence of
Theorem 1.3 of this paper.

TaEOREM 1.2. Let X and f be given as in Theorem 1.1. Corres-
ponding to a prescribed positive constant p there exists a diffeomor-
phism h of E, onto E,, 0-related to f, with domain of identity 0 L °D,,
admitting o differentiable isotopy H into the identity, such that each
section H* of H is & diffeomorphism of E, onto E, with domain of
wdentity 0 L °D,.

In this paper a differentiable m-manifold 2, 0 <m < n, “in E,”
is a differentiable manifold which is regular and proper in E,. %, is
proper in the sense that its topology is induced by that of £, ; it is
regular in E, if each point in X, has a neighborhood N, relative
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to X, such that rectangular coordinates in K, of an arbitrary point
g € N are functions of class C* of some m of these coordinates of q.

DErINITION. An indicatriz of 2, at 0. Suppose that Z,, meets the
origin 0. An ordered set of m linearly independent vectors tangent to
X, at 0 will be called an indicatriz of Z,, at 0. Two indicatrices of Z,,
at 0 are termed equivalent if one can be deformed, as a linearly inde-
- pendent ordered set of m vectors tangent to %,, at 0, into the other. Non-
equivalent indicatrices are termed opposite.

DEFINITION. The f-image of an indicatriz. Let f be a diffeomor-
phism into B, of a neighborhood X of 0. If 2, c X, f(X,) is well-
defined. Let

(w) = (w(1), ..., w(m))
be an ordered set of m contravariant vectors which define an indicatriz
of Z, at 0. The contravariant image wunder f of the wvectors
w(l), ..., w(m), s a set
(w') = (w'(1), ..., w'(m))
of wvectors tangent to the manifold f(2,,) at 0 which serves as an indi-
catriz of f(2,,) at 0. We term (w’) the f-image of (w).

It is clear that f maps equivalent indicatrices into equivalent
indicatrices.

DEFINITION. Relative similarity of indicatrices. Let r and s be
positive integers such that r +s=mn. Let M,, M* and L, be
differentiable manifolds in E, with dimensions r, r and s, respectively.
Suppose that '

M,nL,=0, M*n L, =0,
and that M, and L, have no tangent vector in common at 0, nor M,*
and L, . Let
(w) = (w(l), ..., w(r)) (1.3)

(w*) = (w*(1), ..., w*(r)) (1.4)
be indicatrices of M, and M, *, respectively, at 0. Let
(A) = (A1), ..., A(s)) (1.5)

be an arbitrary indicatriz of L, at 0.
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We say that the indicatrices (w) and (w*) at 0 are similar relative to
L, if the two ensembles of vectors

(A1), ..., A(8) : w(1), ..., w(r)) (1.6)
(AEL); ...5 A(8) = w*(1), ..., w¥(r)) (1.7)

are equivalent as indicatrices of B, at 0.
The property of (w) and (w*) being similar relative to L, is
independent of the choice of (A) as an indicatrix of L, at 0, and of

the choice of (w) and (w*) in equivalence classes of (w) and (w*)
respectively.

Theorem 1.3 is the principal theorem of this paper.

Data in Theorem 1.3. Let X be an open neighborhood of 0 in ,,
and L, and M, differentiable manifolds in X such that
M,.nL,=0, (1.8)

with 7 4+ s =n and 0 <s <n. Suppose moreover that M, and L,
have no tangent in common at 0.

TureorEM 1.3. Let f be a sense-preserving diffeomorphism of X
into B,, leaving 0 fixed, and such that (a,) and (a,) are satisfied.

(a7) L, 0 f(M,) =0 and there is no tangent line common to L, and
f(L,) at 0.

(ay) If (w) is an indicatriz of M, at 0, and if (w*) is the indicatrix
of f(M,) at 0 which is the f-image of (w), then (w) and (w*) are similar
relative to L.

Corresponding to a prescribed positive constant p there then exists
a diffeomorphism h of E, onto E,, 0-related to f, with domain of
identity 0 L °D,, with

Lnh(M,)=0 (1.9)
and such that there exists a differentiable i;sotopy H of h into the identity

on E, each section H' of which is a diffeomorphism of E, onto E, with
domain of identity 0L °D,.

The proof of Theorem 1.3 will be completed in §5.
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Methods. In proving Theorem 1.3 we shall rely on two special
types of difftfomorphisms of E, onto E, termed &-diffeomorphisms
and perispherical diffeomorphisms. They will be sense-preserving
and leave 0 invariant. '

A fundamental condition on £-diffeomorphisms will be that they
“deviate ”’ from the identity in a measured way to be defined in §2.
These ¢-diffeomorphisms have been used in [1] in proving Theorem
3.1. However they do not seem adequate in proving Theorem 1.3
of the present paper.

The major difficulty in proving Theorem 1.3 arises from the
problem of choosing the diffeomorphism % so that (1.9) of Theo-
rem 1.3 issatisfied, as well as the other conditions on » and H in
Theorem 1.3. There are many choices of & such that the conditions of
Theorem, 1.2 are satisfied, but condition (1.9) of Theorem 1.3 is not
satisfied. Perispherical diffcomorphisms aid in defining the diffeo-
morphism % and homotopy H so that all conditions on 4 in Theo-
rem 1.3 are satisfied.

We close this section by recalling some useful definitions.

A product of two isotopies. Let P and @ be differentiable iso-
topies whose sections P* and @' are diffeomorphisms of E, onto E,.
If P! =Q° a differentiable isotopy, W =QP, termed the product
of P and Q, is defined by setting

Wt = P° (t<0)
Wt = P¥ o0<i< P
Wt = Q%-1 G<t<l)
Wt =Q? (t>1).

So defined W is a differentiable isotopy of P? into Q! as one readily
shows.

Deformations of indicatrices represented. For each teR let
w! = (wy, ...,w},) be a vector in E,. The mapping ¢ >w* is regarded
as continuous (differentiable) if each mapping ¢t >wt,i=1,...,n
of R into R is continuous (differentiable).
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(a) For each te R and for 0 <m < n let
() = (@(1), ..., wH(m))

be an ordered set of linearly independent vectors in E,. The mapping
t —>(u') is regarded as continuous (differentiable) if each mapping
t>uf(r), r=1, ...,m is continuous (differentiable).

(b) The preceding mapping ¢+ (%), if continuous (differentiable),
will represent a continuous (differentiable) deformation of the indi-
catrix (w®) into the indicatrix (w?) if

(@(1), ..., wHm)) = (w°(1), ..., w%(m)) t<0)
@'(1), ..., wH(m)) = (wi(1), ..., w(m)) (t>1).
2. ¢-diffeomorphisms. - Let b =(hy, ..., h,) be a differentiable map-
ping of E, into E,. Understanding that z =(x,, ..., x,), set
do(h) =sup ||z — h(z) || (2.1)
2eEp

We suppose that d,(h) is finite. Assuming that the partial derivatives
of the mappings A;, 4 =1, ..., n, are bounded, set

dy(h) = max (sup 15 — M () |) (2.2)
i \zeE, 0z;
where 4 and j have the range 1, ..., n and 8/is a “Kronecker delta’.
Set
d(h) = do(h) + dy(h). | (2.3)

We term d(h) the lst-order deviation of h from the identity.

The constant ¢. There clearly exists a positive constant £ so small
that a C'-mapping k of E, onto E, for which d(h) <¢ has the property
that

3 . D(hy, ..., b,) o 1

Rl el (xek,). (2.4)

So chosen, ¢ will be invariable in this paper.

DEFINITION. A &-mapping. A differentiable mapping b of E,
into B, such that d(h) < ¢, and such that h leaves 0 L °D, point-wise
invariant for some positive constant p, will be called a E-mapping.
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Lemma 2.1. A ¢&-mapping b is a diffeomorphism of E, onto E,.
We begin by proving (i).

(i) The mapping h is onto E,.

It is readily seen that the set A(Z,) is both open and closed
relative to E,. Since E, is connected, 4(#,) = E,. Thus (i) is true.

The mapping k is “ proper” in the sense that A~1(K) is compact -
for arbitrary choice of K as a compact subset of 4(%,) = E,. However

a proper mapping of E, onto E,, which is locally a diffeomorphism,
is a diffeomorphism. See Lemma 4.1 [4].

Thus 4 is a diffeomorphism of E, onto E,.

DErinNiTION. Taking account of Lemma 2.1, a é&-mapping of E,
onto E, will be referred to as a &-diffeomorphism.

Lremma 2.2. A ¢-diffeomorphism k of E, onto E, with domain of
dentity 0L °D, admits a differentiable isotopy K into the identity
each section K* of which is a ¢-diffeomorphism with domain of identity
0u°D,, and such that

d(K*) < d(k). (2.5)

The mapping p. In proving this lemma we shall make use of a

differentiable mapping p of R onto [0, 1] such that

0=p®)[t<0) (I=p)|t>1). (2.6)

Given k as in the lemma we define a mapping K of B, X R into
E, by setting

K(z,t) = (1 — p(?) k(z) + p(t)z (xe E,,t € R). (2.7)

One sees that K is a differentiable mapping of E, X R into E, such

that for each ¢, K* leaves 0 L °D, point-wise invariant. Moreover
for each ¢ ‘

do(Kt) = (1 — p(?)) do(k), d1(Kt) = (1— pu(#)) d1(k)

so that (2.5) holds. Foreach ¢, d(K*) < £, since d(k) < £ by hypothesis.
By Lemma 2.1 then, for each ¢, K*is a diffeomorphism of E, onto E,.

Finally one sees that K*, as defined by (2.7), is an isotopy of &
into the identity, thereby completing the proof of Lemma 2.2.
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Lemma 2.3, below, implies Theorem 1.1 in the special case in
which the linear terms at 0 in the diffeomorphism f define the
identity, that is, in the case in which f is a mapping

z>x+Al) =Mx) (zeX) (2.8)
in which 4 is differentiable on X and each component 4; of 4 has

a critical point at the origin.

Lemma 2.3 contains information not conveyed by Theorem 1.1,
information useful in proving Theorem 1.3.

Lemma 2.3. Corresponding to the above diffeomorphism,x — M(x),
of X into E,, to any positive constant p and any positive constant e,
there exists a diffeomorphism k of E, onto E,, O-related to M, with
domain of identity 0 u°D, and with d(k) < e.

Let ¢ — A(t) be a differentiable mapping of R onto [0, 1] such that
(L=20)[t<1) (0=2A@)|t> 4)
Let o be a positive constant at most p/2 such that D,, c X.

Denote || z|| by 7. In vector notation, set

PRRIETER (;) A@®) (r < 20) (2.9)

and k(z) =z for r > 2¢. Then
kx) =2+ Ax) =M@x) (r<o). (2.10)

It is clear that k is a differentiable mapping of E, into E,.
Fori,j=1,...,m and for r < 20

r2\ 04, , f 73\ 2; 4;(x)
A(F)’@J(ZH‘“(?)E 3@

(2.11)
(23

=l
5— 27 (@)

The right member of (2.11) is at most /2 for r < 20 if o is suffi-
ciently small. The left member of (2.11) vanishes for r > 20. Hence
d,(k) < €/2. Moreover

do(k) < max (|A@)[I|lz]l < 20)
in accord with (2.9), so that dy(k) < €/2 if o is sufficiently small.

Hence d(k) < € for o sufficiently small.
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By definition & has a domain of identity 0 u°D,,. By Lemma
2.1, k is then a diffeomorphism of Z, onto E,. Since p > 20, 0u°D,
is also a domain of identity of k. By (2.10) k is 0-related to M.

This completes the proof of Lemma 2.3.

We return to a diffeomorphism z - f(z) of Theorem 1.1 and, for
t1=1,...,n,set

w@) =2 )z, @eE,) (2.12)

0z;
summing as to j on the range 1, ..., n. Theorem 2.1 below is a
corollary of Lemma 2.3. In it we refer to the linear diffeomorphism

2 >9@) = 20, .. @) (2.13)

THEOREM 2.1. Let X be an open neighborhood of 0 in E, and
x - f(x) a sense-preserving diffeomorphism of X into E, which leaves
0 invariant. Corresponding to prescribed positive constants p and e,
there exists a diffeomorphism k_ of E, onto E, with domain of identity
0 v °D,, with d(k,) < ¢, and such that the composite diffeomorphism
gk, of B, onto E, is 0-related to f.

Nore. Theorem 2.1 is also true if f is sense-inverting as our
proof shows. We have written Theorem 2.1 as above to preserve
the continuity of our development.

ProoF oF THEOREM 2.1. Observe that the mapping

x->@ 1f) () =M@x) (xeX) (2.14)
(introducing M (z)) has the form
z>Mx) =2+ Ax) (2.15)

where A has the properties ascribed to 4 in (2.8). From Lemma
2.3 we then infer the following. There exists a diffeomorphism
k, of E, onto E, with domain of identity 0 v °D,, with d(k,) <e,
and k, 0-related to g~ ! f. It follows that gk, is O-related to f.

This completes the proof of Theorem 2.1.

Theorem 1.2 will follow from Theorem 1.3 as proved in §5.
However a proof of Theorem 1.2 can here be sketched as follows.
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Lemma 2.2 implies the following. For 0 < ¢ < ¢ there exists a
differentiable isotopy K, of k, (of Theorem 2.1) into the identity
such that for each ¢, K! is a diffeomorphism of E, onto E, with
domain of identity 0 u°D,. '

The mapping g is a linear sense-preserving diffeomorphism of
E, onto E, leaving 0 invariant. One could reé,dily show that there
exists a diffeomorphism y of E, onto E, 0-related to g, with domain
of identity 0 v °D,, admitting an isotopy I' into the identity such
that for each ¢, 1"‘ is a diffeomorphism of E, on’co E, with domain
of identity 0 u °D,.

For each € < ¢ Theorem 1.2 would be satisfied by the composite
diffeomorphism A, = y k, and by an isotopy H, of which the section
H! is the composite diffeomorphism,

H!=T*K! (teR), (2.16)
taking A, and H, in place of A and H in Theorem 1.2. To verify
this one notes that &, is a diffeomorphism of E, onto E, with domain
of identity 0 v °D, and is 0-related to f. The isotopy H, deforms &,
into the identity. Its sections H! are diffefomorphisms of E, onto E,
with domains of identity 0 L °D,. Theorem 1.2 will thus be satisfied
by h, and H, in place of & and H for arbitrary choice of ¢ < &.

However &, and H, will not in general satisfy Theorem 1.3 because
(1.9) will not in general be satisfied by such an 4.

The structure of the proof of Theorem 1.3 is similar to the above.
One chooses k, and K, as above, but then chooses y and I' in a special
way so that Theorem 1.3, including (1.9), is satisfied by h, and H,,
as defined by (3.16), provided e is sufficiently small.

“Perispherical diffeomorphisms’’ will aid in defining I" and .

3. Perispherical diffeomorphisms. For each positive number ¢ let
8, denote the (n — 1)-sphere in E, with center at the origin and
radius c.

PERISPHERICAL DIFFEOMORPHISMS DEFINED. A diffeomorphism
{ of E, onto E, leaving 0 invariant will be termed perispherical



