Markus Lumpe
Wim Vanderperren (Eds.)

Software
Composition

6th International Symposium, SC 2007
Braga, Portugal, March 2007
Revised Selected Papers

LNCS 4829

@ Springer

Markus Lumpe Wim Vanderperren (Eds.)

Software
Composition

6th International Symposium, SC 2007
Braga, Portugal, March 24-25, 2007
Revised Selected Papers

@ Springer

Volume Editors

Markus Lumpe

Swinburne University of Technology

Faculty of Information and Communication Technologies
Hawthorn, VIC 3122, Australia

E-mail: mlumpe @ict.swin.edu.au

Wim Vanderperren

Vrije Universiteit Brussel

System and Software Engineering Lab - ETRO
Pleinlaan 2, 1050 Brussel, Belgium

E-mail: wvderre @vub.ac.be

Library of Congress Control Number: 2007941317

CR Subject Classification (1998): D.2, D.1.5, D.3, E3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-77350-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77350-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any okr way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12206353 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4829

Preface

On behalf of the Organizing Committee we are pleased to present the proceedings
of the 2007 Symposium on Software Composition (SC 2007). The goal of SC 2007
was to bring together the research and industrial communities in order to address
the challenges of the component-based software development approach. SC 2007
was the sixth symposium on software composition in the SC series that seeks
to develop a better understanding of how software components may be used to
build and maintain large software systems.

This LNCS volume contains the revised versions of the papers presented at
SC 2007, which was held as a satellite event of the European Joint Conferences
on Theory and Practice of Software (ETAPS) in Braga, Portugal, March 24-25,
2007. The symposium began with a keynote on “Composition by Anonymous
Parties” by Farhad Arbab (CWI and Leiden University). The main program
consisted of six technical sessions related to specific aspects of component-based
software development.

In response to the call for papers, we received 59 submissions from over 20
countries and 6 continents. Each paper was reviewed by at least three Program
Committee members. The entire reviewing process was supported by Microsoft’s
Conference Management Toolkit. In total, 15 submissions were accepted as full
papers and 5 submissions were accepted as short papers.

We would like to express our gratitude to the General Chair, Judith Bishop,
for her invaluable support and guidance that made the symposium in Braga pos-
sible. We would like to thank the European Network of Excellence on Aspect-
Oriented Software Development (AOSD-Europe), the International Federation
for Information Processing, Technical Committee on Software: Theory and Prac-
tice (IFIP, TC 2), and IBM Zurich for sponsoring this event. We are also thankful
to the System and Software Engineering Lab at the Vrije Universiteit Brussel
for the administrative support in hosting the symposium’s Web page. Last but
not least, we would like to thank the organizers of ETAPS 2007 for hosting and
providing an organizational framework for SC 2007.

September 2007 Markus Lumpe
Wim Vanderperren

Organization

General Chair

Judith Bishop University of Pretoria, South Africa

General Co-chairs

Markus Lumpe Towa State University, USA
Wim Vanderperren Vrije Universiteit Brussel, Belgium

Program Committee

Uwe Aflmann Dresden University of Technology, Germany
Brian Barry Bedarra Research Labs, Canada

Alexandre Bergel Trinity College, Dublin, Ireland

Vittorio Cortellessa University of L’Aquila, Italy

Thierry Coupaye France Telecom, France

Birgit Demuth Dresden University of Technology, Germany
Maja DHondt CWI, The Netherlands

Flavio De Paoli University of Milan, Italy

Dieter Fensel DERI Galway/Innsbruck, Ireland/Austria
Dimitra Giannakopoulou RIACS/NASA Ames Research Center, USA
Volker Gruhn University of Leipzig, Germany

Thomas Gschwind IBM Research, Switzerland

Arno Jacobsen University of Toronto, Canada

Mehdi Jazayeri Vienna University of Technology, Austria
Wouter Joosen Katholicke Universiteit Leuven, Belgium

Joe Kiniry University College Dublin. Ireland

Kung-Kiu Lau The University of Manchester, UK

Welf Lowe University of Vaxjo, Sweden

Karl Lieberherr Northeastern University, USA

Jeff Magee Imperial College, London, UK

Klaus Ostermann Technical University of Darmstadt, Germany
Claus Pahl Dublin City University, Ireland

Arnd Poetzsch-Heffter Kaiserslautern University of Technology, Germany
Elke Pulvermiiller University of Luxembourg, Luxembourg
Ralf Reussner University of Oldenburg, Germany

Lionel Seinturier University of Lille, France

Jean-Guy Schneider Swinburne University of Technology, Australia
Mario Stdholt Ecole des Mines de Nantes, France

Ragnhild Van Der Straeten University of Brussels, Belgium
Eric Tanter University of Chile, Chile

VIII Organization

External Referees

Adina Sirbu

Adrian Mocan
Andrea Maurino
Andrew McVeigh
Charles Zhang
Christoph Bockisch
Cuong Tran

Daniel Sykes

Ellen Van Paesschen
Emilia Cimpian
Faris M. Taweel
Fintan Fairmichael
Florian Heidenreich
Frank-Ulrich Kumichel
Guillaume Pothier

Ilie Savga

Toannis Ntalamagkas
James Scicluna

Jan Schafer
Jean-Marie Gaillourdet
Karl Klose

Kathrin Geilmann
Katja Lehmann
Ling Ling

Maarten Bynens
Marco Comerio
Mick Kerrigan
Mikolas Janota
Mirko Seifert

Nicole Rauch

Sponsoring Institutions

Pasqualina Potena
Patrick Michel
Perla Velasco
Radu Grigore
Robin Green
Rodolfo Toledo
Shane Brennan
Simone Roettger
Soren Blom
Steffen Zschaler
Stijn Mostinckx
Vinod Muthusamy
Vladyslav Ukis
Wouter Horre
Zhengdao Xu

IFIP, Laxenburg, Austria

IBM Zurich, Switzerland

AOSD-Europe, European Network of Excellence in AOSD, Lancaster, UK
Vrije Universiteit Brussel, Belgium

Microsoft Research, Redmond, WA

Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1- 4214
please contact your bookseller or Springer

Vol. 4849: M. Winckler, H. Johnson, P. Palanque (Eds.),
Task Models and Diagrams for User Interface Design.
X111, 299 pages. 2007.

Vol. 4834: R. Cerqueira, R.H. Campbell (Eds.), Middle-
ware 2007. X111, 451 pages. 2007.

Vol. 4829: M. Lumpe, W. Vanderperren (Eds.), Software
Composition. X, 281 pages. 2007.

Vol. 4824: A. Paschke, Y. Biletskiy (Eds.), Advances
in Rule Interchange and Applications. XIII, 243 pages.
2007.

Vol. 4807: Z. Shao (Ed.), Programming Languages and
Systems. XI, 431 pages. 2007.

Vol. 4799: A. Holzinger (Ed.), HCI and Usability for
Medicine and Health Care. XVI, 458 pages. 2007.

Vol. 4789: M. Butler, M.G. Hinchey, M.M. Larrondo-
Petrie (Eds.), Formal Methods and Software Engineer-
ing. VIII, 387 pages. 2007.

Vol.4767: F. Arbab, M. Sirjani (Eds.), International Sym-
posium on Fundamentals of Software Engineering. XIII,
450 pages. 2007.

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4762: K.S. Namjoshi, T. Yoneda, T. Higashino, Y.
Okamura (Eds.), Automated Technology for Verification
and Analysis. XIV, 566 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: F. Cappello, T. Herault, J. Dongarra (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. XVI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.J. Kramer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007.

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-
tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiére (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability, and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, I. Niemeld (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. X VI, 201 pages. 2007.

Vol. 4640: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development IV. IX, 191
pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. XI, 469 pages. 2007.

Vol. 4620: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development III. IX, 201
pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ernst (Ed.), ECOOP 2007 - Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovi¢, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
X1, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part IL. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part 1. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part ITI. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part II. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, F. Kordon (Eds.), Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. XI, 346 pages. 2007.

Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
Proofs. IX, 217 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,
C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XII, 233 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.
Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-

Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
X1, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.
Vol.4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIII, 157 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Duran, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXII, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodereder, P. Leroy, Ada 2005 Reference Manual. X XTI,
765 pages. 2006. .

Vol. 4346: L. Brim, B.R. Haverkort, M. Leucker, J. van

de Pol (Eds.), Formal Methods: Applications and Tech-
nology. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4336: V.R. Basili, H.D. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.

Vol. 4326: S. Gobel, R. Malkewitz, 1. Iurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. X1, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Nifez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4229: E. Najm, J.-F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. XVII,
721 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Table of Contents

Invited Talk

Composition by Anonymous Third Parties

Farhad Arbab

Session: Composition Contracts

Defining Component Protocols with Service Composition: Illustration

with the Kmelia Model ... uavme ssnmssmsns smsmsnmans smsms sus
Pascal André, Gilles Ardourel, and Christian Attioghé

Composite Contract Enforcement in Hierarchical Component
SYSTEINS o o
Philippe Collet, Jacques Malenfant, Alain Ozanne, and

Nicolas Rivierre

Towards a Unifying Theory for Choreography Conformance and
Contract COMPHANEE s ssxesmmmiwsmssgems @ mprEss s @ssssns
Mario Bravetti and Gianluigi Zavattaro

Session: Composition Design and Analysis
A Process-Algebraic Approach to Workflow Specification and
Refinement. .ocm: 56 s s0s @i 055 emsas 18,565 10368 98585 §85.45

Peter Y.H. Wong and Jeremy Gibbons

Generic Feature-Based Software Composition
Tijs van der Storm

Composition Management Interfaces for a Predictable Assembly
Xabier Aretrandieta, Goiuria Sagardui, and Franck Barbier

Path-Based Error Propagation Analysis in Composition of Software

SEIVICES : ws s sos smses s 0o sasss a8 Me iMaEs SGEs sRERFEBERE 58
Vittorio Cortellessa and Pasqualina Potena

Session: Dynamic Composition

Dynamically Adaptable Applications with iPOJO Service
COMPONENTS s 550555 6% 855 5855388 585,555 855 585 mmiionmmemesmen

Clement Escoffier and Richard S. Hall

18

34

66

81

97

113

X Table of Contents

Dynamic Contextual Service Ranking............................. .. 129
André Bottaro and Richard S. Hall

Session: Short Papers

Measuring Reactability of Persistent Computing Systems 144
Takumi Endo. Yuichi Goto, and Jingde Cheng

Requirements for Applying Aspect-Oriented Techniques in Web Service
Composition Languages 152
Mathieu Braem and Niels Joncheere

Synthesizing Communication Middleware from Explicit Connectors in
Component Based Distributed Architectures........... 160
Dietmar Schreiner and Karl M. Géschka

Streamlining Feature-Oriented Designs. 168
Martin Kuhlemann, Sven Apel. and Thomas Leich

Requirements for Reusable Aspect Deployment 176
Bruno De Fraine and Mathieu Braem

Session: Aspect-Oriented Programming

Aspect-Oriented Programming: Selecting and Exposing Object Paths ... 184
Mohammed Al-Mansari. Stefan Hanenberg. and Rainer Unland

Debugging Aspect-Enabled Programs............... 200
Mare Faddy, Alfred Aho, Weiping Hu, Paddy McDonald, and
Julian Burger

Unification of Static and Dynamic AOP for Evolution in Embedded

Software SyStemso 216
Wasif Gilani. Fabian Scheler, Daniel Lohman. Olaf Spinczyk. and
Wolfgang Schroder-Preikschat

Session: Structural Composition

Patterns of Component Evolution, 235
Rajesh Vasa. Markus Lumpe, and Jean-Guy Schneider

An Approach for Structural Pattern Composition 252
Imed Hammouda and Kai Koskimies

Composite Connectors for Composing Software Components. 266

Kung-Kiu Lau, Ling Ling, Vladyslav Ukis, and
Perla Velasco Elizondo

Author Index 281

Composition by Anonymous Third Parties

Farhad Arbab

Center for Mathematics and Computer Science (CWI), Amsterdam and
Leiden Institute for Advanced Computer Science, Leiden University
The Netherlands

Composition of algorithms has dominated software composition since the incep-
tion of programming. The ubiquitous subroutine call acts as the primary compo-
sition operator in virtually all programming models and paradigms, appearing
in various guises such as function call, method invocation, remote procedure call,
etc. The inadequacies of the tight coupling imposed by such composition mech-
anisms and the need for more flexible alternatives have become clearer along the
evolution through object-oriented to component-based, and now, service oriented
computing.

Interaction arises out of how a composition allows the active entities in a
composed system to play against one another. Communication primitives used
in classical models of concurrency to allow interaction among processes in a
composed system share the targeted message passing nature of function calls:
in order to interact, they generally require a process to directly address foreign
entities, such as other processes or channels, that belong to the environment of
the process. Interaction constitutes the most interesting and the most difficult
aspect of concurrent systems. We have studied protocols for, and various aspects
of, interaction in concurrency theory. Curiously, however, no model of concur-
rency has hitherto considered interaction as a first-class concept! This makes
dealing with interaction protocols more difficult than necessary, by erecting a
level of indirection that acts as an obstacle between the concrete structures con-
structed and manipulated in a model, on the one hand, and interaction as the
subject of discourse, on the other.

Recognizing the need to go beyond the success of available tools sometimes
seems more difficult than accepting to abandon what does not work. Our con-
currency and software composition models have served us well-enough to bring
us up to a new plateau of software complexity and composition requirements
beyond their own effectiveness. In this sense, they have become the victims of
their own success. Dynamic composition of behavior by orchestrating the in-
teractions among independent distributed components or services has recently
gained prominence. We now need new models for software composition to tackle
this requirement.

In this presentation, I describe our on-going work on a compositional model
for construction of complex concurrent systems out of simpler parts, using in-
teraction as the only first-class concept. This leads to a simple, yet surprisingly
expressive, connector language, together with effective models and tools for com-
position of complex systems of distributed components and services.

M. Lumpe and W. Vanderperren (Eds.): SC 2007, LNCS 4829, p. 1, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Defining Component Protocols with Service
Composition: Illustration with the Kmelia Model

Pascal André, Gilles Ardourel, and Christian Attioghé

LINA CNRS FRE 2729 - University of Nantes
F-44322 Nantes Cedex, France
(Pascal.Andre,Gilles.Ardourel,Christian.Attiogbe)@univ-nantes.fr

Abstract. We address in this article the description and usage of
component protocols viewed as specific services. In addition to inter-
component service composition, our Kmelia component model supports
vertical structuring mechanisms that allow service composition inside a
component. The structuring mechanisms (namely state annotation and
transition annotation) are then used to describe protocols which are con-
sidered here as component usage guides. These structuring mechanisms
are integrated in the support language of our component model and are
implemented in our COSTO toolbox. We show how protocol analysis is
performed in order to detect some inconsistencies that may be introduced
by the component designers.

Keywords: Component, Service, Composition, Protocols, Property
Analysis.

1 Introduction

In this work we address the description and usage of component protocols viewed
as specific services and described as such. In [9] Meyer suggests a property clas-
sification for a Component Quality Model that may lead to trusted components.
We consider the assertions and usage documentation properties which range in
the Behaviour category from the classification. The first property requires formal
descriptions which are helpful to ensure the correctness of the components and
their assemblies. The usage documentation property requires specific abstraction
means in order to help the component-based system developer to build correct
assemblies. Clearly, this component documentation property participates in the
development of trusted components: this motivates our work. In this context,
component documentation should therefore be more than a list of available ser-
vices (like IDL descriptions); it should overview the component behaviour and
constraints, provide some guidelines to use services, describe precisely the us-
age conditions of services and the interaction conditions. These requirements are
fulfilled by the present work which builds on the Kmelia component model [4]
which is an abstract component model based on services. Kmelia services are
more than simple operations: they enable complex interactions and are the key

M. Lumpe and W. Vanderperren (Eds.): SC 2007, LNCS 4829, pp. 2-17, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Defining Component Protocols with Service Composition 3

element to model components and to connect them to make assemblies. The use
of service is central to the verification of compatibility when assembling compo-
nents according to four compatibility layers: signature, structure, contracts and
behaviours layers. In a previous article [4] we presented the Kmelia model and
we studied the definition and the verification of component assemblies which are
based on a horizontal service composition. In the present article we extend the
service composition.

In the horizontal composition, services of the same level in various compo-
nents are composed, with respect to the four compatibility levels, to define new
services.

To enforce the idea of component documentation, we consider a methodologi-
cal layer between services and components. This layer deals with the good usage
of the components: which services can be used to fulfil a given need and in what
order these services should be called. This layer corresponds to the concept of
component protocol already used in various component models. Compared with
related approaches (see Section 4) which are provider-oriented protocols, our
proposal suggests user-oriented protocols. This means that the Kmelia compo-
nent protocols are not a component life-cycle or a component constraint but
merely macro-services which play an important role in component composition.
To support protocols in Kmelia we now introduce a vertical service composition,
based on hierarchical structuring operators, to build new provided services from
existing ones. Building protocols with service composition is beneficial because:
the component model stays simple; protocols can be combined and can play
a central role in component composition and last, the verification support of
service composition may be reused.

The contribution of this article is twofold: new vertical service composition
operators are introduced with their formal descriptions; the definition of powerful
component protocols, using service composition, to structure the component
interface. From the verification point of view we reuse the existing techniques
developed for the service level and we adapt them to the protocol level.

The article is structured as follows. Section 2 is a brief overview of the Kmelia
formal component model. In Section 3 we define the vertical service composition.
Component protocols are developed in Section 4; first we discuss the concept
and compare it with related approaches; then we define protocols in Kmelia and
illustrate with an example of a bank Automatic Teller Machine system. The
verification aspect is studied in Section 5. Last, we conclude in Section 6 and
discuss some perspectives.

2 Overview of the Kmelia Component Model

Kmelia is a component model based on services [4]: an elementary Kmelia compo-
nent encapsulates several services (Fig. 1). The service behaviours are captured
with labelled transition systems. Kmelia makes it possible to specify
abstract components, to compose them and to check various properties. A Kmelia
abstract component is a mathematical model of an open multi-service system
that supports synchronous communication with its environment. A component

4 P. André, G. Ardourel, and C. Attioghé
Component C1 Provided aService_1 ()
Interface <Interface descr> Interface <Interface descr>
Types <Type Defs> Pre <Predicate>
Variables <Var list> Post <Predicate>
Invariant Behaviour
<Predicate> init aStatel
Initialisation final aStateF
. // var. assignments { state_i --label--> state_j
.}
Services end
. // as described at side Required aService_2 ()
end ... //in the same way

Fig. 1. Overview of Kmelia syntax

specification language (also named Kmelia) and a prototype toolbox (COSTO)
support the Kmelia model. The toolbox already permits formal analysis via Lo-
tos/CADP! and Mec?. We recall (from [4]) in the following the main definitions
and the related notations to facilitate the reading of the article.

Service Description. A service s of a component (' is defined with an interface
I and a (dynamic) behaviour Bs: (I, Bs). The interface I of a service s is defined
by a 5-tuple (o, P, @Q, Vs, Ss) where ¢ is the service signature (name, arguments,
result), P is a precondition, @) is a postcondition, Vj is a set of local declarations
and the service dependency Sy is a 4-tuple Sy = (subs, cals, reqs, ints) of
disjoint sets where subs (resp. cals, reqs, ints) contains the provided services
names (resp. the services required from the caller, the services required from any
component, the internal services) in the s scope.

The behaviour B of a service s is an extended labelled transition system (eLTS)

defined by a 6-tuple (S, L, 8, Sy, Sp, @) with S the set of the states of s; L is the
set of transition labels and 6 is the transition relation (6 € S x L — S). Sy is the
initial state (Sp € S), Sp is the finite set of final states (Sp C S), @ is a state
annotation relation (Y € S < suby). The transitions in 6 (with the((ss,[bl), ts)
abstract form) have the ss--1bl-->ts concrete form.
The transition labels are (possibly guarded) combinations of actions: [guard]
action*. The actions may be either elementary actions or communication ac-
tions. An elementary action (an assignment for example) does not involve other
services; it does not use a communication channel. A communication action is
cither a service call/response or a message communication.

Component Description. A component C is a 8-tuple (W, Init, A, N, I, Dg,
v,Cs) with:

! www.inrialpes.fr/vasy
2 altarica.labri.fr

Defining Component Protocols with Service Composition 5

W = (I V. Vp, Inv) the state space where T is a set of types, V' a set of

variables, Vi C V x T a set of typed variables, and Inv is the state invariant;

— Init the initialisation of the Vi variables;

— A a finite set of elementary actions;

— N a finite set of service names;

— I the component interface which is the union of two disjoint finite sets: I, the
set of names of the provided services and 7, the names of required services.

— Dg is the set of service descriptions which is partitioned into the provided
services (Dg,) and the required services (Dg,).

— v: N — Dg is the function that maps service names to service descriptions.
Moreover there is a projection of the I partition on its image by v:
nel, = v(n)€Ds, Anel. =v(n)eDs,

— Cg is a constraint related to the services of the interface of €' in order to

control the usage of the services.

The component behaviour relies on the behaviours of its services. The Kmelia
components are composable via the interfaces of the involved services. Interface-
compatible and behaviour-compatible services are composed at various levels
to build assemblies. Assemblies and services can be encapsulated into a larger
component called a composition.

3 Service Composition

In this section we consider two dimensions for service composition: cach dimen-
sion is related to service behaviour (eLTS). The first dimension already pre-
sented in [4] deals with horizontal structuring mechanisms to compose services
and components from existing ones on the basis of a client-supplier relation. The
second dimension is introduced in this article: it deals with vertical structuring
mechanisms for building new services.

3.1 Horizontal Structuring Mechanisms

Horizontal service composition is tightly coupled with component composition
and hicrarchical links between components. The horizontal structuring mech-
anisms are established by linking required services to services which are pro-
vided cither internally or by the caller service or by a third component. These
service calls are handled with communication mechanisims. The services are
described in such a way that their interactions arc made explicit via commu-
nication mechanisms. We use communication channels and the standard com-
munication primitives ! and ?: they are complemented with !'! and 7?7 to deal
respectively with service call and service wait. Indeed as service interactions are
not elementary, we distinguish their communication operators from the primitive
ones.

6 P. André, G. Ardourel, and C. Attiogbé

The interacting services are viewed (from an observer) as one service. Inter-
component interactions are based on service behaviour communications. The
communications that support the interaction and hence the composition, are
matching pairs: send message(!)-receive message(?), call service(!!)-wait service
start(?¢), emit service result(!!)-wait service result(??).

Two services are composable if their signatures are matching (types), the
assertions are consistent, the (hierarchical) service dependencies are not con-
flicting and their behaviours are compatible. When services are composed, they
are linked via the information available in their interfaces. Provided services are
linked to corresponding required services. In the same way, subservices are linked
between the composed services. The transition labels of the service behaviours
are used to perform the running of the resulting behaviour: either we have inde-
pendent behaviours or a synchronising behaviour in the case of matching labels.

3.2 Vertical Structuring Mechanisms

In the following we consider and formalise two vertical structuring mechanisms
that enable us to structure hierarchically the services: they are the state annota-
tion mechanism and the transition annotation mechanism. Additionally to the
flexibility of service description with optional behaviours (syntactically expressed
as a state annotation) or mandatory behaviours (syntactically expressed as a
transition annotation) the structuring mechanisms provide a means to reduce
the LTS size, to share common services or subservices and to master the com-
plexity of service specification, while preserving the pre/post condition contract
at the begining/termination of services (both client and supplier constraints).

We maintain the principle that formally the unfolding of an ¢LTS should
result in a LTS (in a recursive way). The unfolding of a service consists in
the unfolding of all its annotated states (state_unfold in the sequel) and the
unfolding of the annotated transitions (transition_un fold in the sequel). For the
formalisation we use the (standard) operational semantics rules with premises
and consequences separated by an horizontal line.

The << >> structuring operator. We use the << >> operator to denote an
optional service call at any state of a service running. The principle is that the
caller of a service s, of a component C', may call a service ss that belongs to the
provided interface suby of s, when the running of s reaches a state ¢; (of the LTS
of s) annotated with ss.

This optional service call is syntactically noted with e; <<ss>> in the eLTS
of s. In [4] the state annotation mechanisms (called branching states) was infor-
mally introduced. According to the established link between a required and a
provided service, there is a renaming which results in a uniform link name. There-
fore, the service call is performed with _linkName!!serviceName(...) where
_linkName (resp. serviceName) stands for the established link name (resp. the
service name).

