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Preface

This text discusses elementary partial differential equations in the engineering
and physical sciences. It is suited for courses whose titles include Fourier series,
orthogonal functions, or boundary value problems. It may also be used in courses
on Green'’s functions or transform methods.

Simple models (heat flow, vibrating strings and membranes) are emphasized.
Equations are formulated carefully from physical principles, motivating most
mathematical topics. Solution techniques are developed patiently. Mathematical
results frequently are given physical interpretations. Proofs of theorems (if given
at all) are presented after explanations based on illustrative examples. Numerous
exercises of varying difficulty form an essential part of this text. Answers are
provided for those exercises marked with a star (*).

Standard topics such as the method of separation of variables, Fourier
series, and orthogonal functions are developed with considerable detail. In addition,
there is a variety of clearly presented topics, such as differentiation and integration
of Fourier series, zeros of Sturm-Liouville eigenfunctions, Rayleigh quotient,
multidimensional eigenvalue problems, Bessel functions for a vibrating circular
membrane, eigenfunction expansions for nonhomogeneous problems, Green’s
functions, Fourier and Laplace transform solutions, method of characteristics,
and numerical methods. Some optional advanced material of interest is also
included (for example, asymptotic expansion of large eigenvalues, calculation of
perturbed frequencies using the Fredholm alternative, and the dynamics of shock
waves).

The text has evolved from the author’s experiences teaching this material
to different types of students at various institutions (M.1.T., U.C.S.D.. Rutgers,

xi



Ohio State, and S.M.U.). Prerequisites fcr the reader are calculus and elementary
ordinary differential equations. (These are occasionally reviewed in the text,
where necessary.) For the beginning student, the core material for a typical
‘course consists of most of Chapters 1-6. This wili usually be supplemented by
a few other topics. The text is somewhat flexible for an instructor, since most
sections in Chapters 7-13 only depend on Chapters 1-6. Chapter 10 is an
exception, since it requires Chapters 8 and 9.

Most of the first edition remains. Revised derivations, which are intended
to be clearer, are presented for heat flow and-the vibrations of strings and
membranes. Some of the more advanced mathematical thcory on the convergence
of a Fourier series has been deleted, so that there is room for a later section
that formulates the partial differential equations of traffic flow. Although only
a few new exercises have been added, answers are now provided for a substantially
increased number of exercises.

My object has been to explain clearly many elementary aspects of partial
differential equations as an introduction to this vast and important field. The
student, after achieving a certain degree of competence and understanding, can
use this text as a reference, but should be prepared to refer to other books cited
in the bibliography for additional material.

Finally, it is hoped that this text enables the reader to find enjoyment in
the study of the relationships between mathematics and the physical sciences.

Richard Haberman
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Heat €quation

1.1 INTRODUCTION

We wish to discuss the solution of elementary problems involving partial differential
equations, the kinds of problems that arise in various fields of science and
engineering. A partial differential equation (PDE) is a mathematical equation
containing partial derivatives, for example,

ou u
_— + _—— . N O
Py 36x 0 (1.1.1)

We could begin our study by determining what functions u(x, 1) satisfy (1.1.1).
However, we prefer to start by investigating a physical problem. We do this
for two reasons. First, our mathematical techniques probably will be of greater
interest to you when it becomes clear that these methods analyze physical problems.
Second, we will actually find that physical considerations will motivate many of
our mathematical developments.

Many diverse subject areas in engineering and the physical sciences are
dominated by the study of partial differential equations. No list could be all-
inclusive. However, the following examples should give you a feeling for the
type of areas that are highly dependent on the study of partial differential equations:
acoustics, aerodynamics, elasticity, electrodynamics, fluid dynamics, geophysics
(seismic wave propagation), heat transfer, meteorology, oceanography, optics,
petroleum engineering, plasma physics (ionized liquids and gases), quantum
mechanics.

We will follow a certain philosophy of applied mathematics in which the
analysis of a problem will have three stages:



1. Formulation
2. Solution
3. Interpretation

We begin by formulating the equations of heat flow describing the transfer
of thermal energy. Heat energy is caused by the agitation of molecular matter.
Two basic processes take place in order for thermal energy to move: conduction
and convection. Conduction results from the collisions of neighboring molecules
in which the kinetic energy of vibration of one molecule is transferred to its
nearest neighbor. Thermal energy is thus spread by conduction even if the
molecules themselves do not move their location appreciably. In addition, if a
vibrating molecule moves from one region to another, it takes its thermal energy
with it. This type of movement of thermal energy is called convection. In order
to begin our study with relatively simple problems, we will study heat flow only
in cases in which the conduction of heat energy is much more significant than
its convection. We will thus think of heat flow primarily in the case of solids,
although heat transfer in fluids (liquids and gases) is also primarily by conduction
if the fluid velocity is sufficiently small.

1.2 DERIVATION OF THE CONDUCTION OF HEAT
IN A ONE-DIMENSIONAL ROD

Thermal energy density. We begin by considering a rod of constant
cross-sectional area A oriented in the x-direction (from x = 0 to x = L) as
illustrated in Fig. 1.2.1. We temporarily introduce the amount of thermal energy
per unit volume as an unknown variable and call it the thermal energy density:

e(x, t) = thermal energy density.

We assume that all thermal quantities are constant across a section; the rod is
one-dimensional. The simplest way this may be accomplished is to insulate
perfectly the lateral surface area of the rod. Then no thermal energy can pass
through the lateral surface. The dependence on x and 7 corresponds to a situation
in which the rod is not uniformly heated; the thermal energy density varies from
one cross section to another.

o(x, t) :»(x+Ax 1) 3 ’ :

X x+Ax

Figure 1.2.1 One-dimensional rod with heat energy ﬂowmg into and out of a
thin slice.
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Heat energy. We consider a thin slice of the rod contained between x
and x + Ax as illustrated in Fig. 1.2.1. If the thermal energy density is constant
throughout the volume, then the total energy in the slice is the product of the
thermal energy density and the volume. In general, the energy density is not
constant. However, if Ax is'exceedingly small, then e(x, ) may be approximated
as a constant throughout the volume so that

heat energy = e(x, DA Ax,

since the volume of a slice is A Ax.

Conservation of heat energy. The heat energy between x and x + Ax
changes in time due only to heat energy flowing across the edges (x and
x + Ax) and heat energy generated inside (due to positive or negative sources
of heat energy). No heat energy changes are due to flow across the lateral
surface, since we have assumed that the lateral surface is insulated. The fun-
damental heat flow process is described by the word equation

rate of change  heat energy flowing
of heat energy = across boundaries +
in time per unit time

heat energy generated
inside ‘per unit time.

This is called conservation of heat energy. For the small slice, the rate of change
of heat energy is

d
Y [e(x, NA Ax],
where the partial derivative /9t is used because x is being held fixed.

Heat flux. Thermal energy flows to the right or left in a one-dimensional
rod. We introduce the heat flux

heat flux (the amount of thermal energy per unit
time flowing to the right per unit surface area).

o(x, 1) =

If ¢(x, 1) < 0, it means that heat energy is flowing to the left. Heat energy
flowing per unit time across the boundaries of the slice is ¢(x, )A — d(x + Ax, DA,
since the heat flux is the flow per unit surface area and it must be multiplied by
the surface area. If ¢(x, ©) > 0 and ¢(x + Ax, ) > 0, as illustrated in Fig.
1.2.1, then the heat energy flowing per unit time at x contributes to an increase
of the heat energy in the slice, whereas the heat flow at x + Ax decreases the
heat energy.

Heat sources. We also allow for internal sources of thermal energy:

Q(x, 1) = heat energy per unit volume: generated per unit time,

Sec. 1.2 Derivation of the Conduction of Heat in a One-Dimensional Rod 3



perhaps due to chemical reactions or electrical heating. Q(x, ) is approximately
constant in space for a thin slice, and thus the total thermal energy generated
per unit time in the thin slice is approximately Q(x, f)A Ax.

Conservation of heat energy (thin slice). The rate of change of heat
energy is due to thermal energy flowing across the boundaries and internal
sources: -

%oumAn%¢mnA—¢u+AmnA+anAm; a.2.1

Equation (1.2.1) is not precise because various quantities were assumed ap-
proximately constant for the small cross-sectional slice. We claim that (1.2.1)
becomes increasingly accurate as Ax — 0. Before giving a careful (and math-
ematically rigorous) derivation, we will just attempt to explain the basic ideas
of the limit process, Ax — 0. In the limit as Ax — 0, (1.2.1) gives no interesting
information, namely, 0 = 0. However, if we first divide by Ax and then take
the limit as Ax — 0, we obtain -

QE = lim ¢(X, 1) - ¢(x + AX, ‘)
ot Ax—0 Ax

where the constant cross-sectional area has been canceled. We claim that this

result is exact (with no small errors), and hence we replace the = in (1.2.1) by

~ =in(1.2.2). Inthis limiting process, Ax — 0, ¢ is being held fixed. Consequently,

=~ from the definition of a partial derivative,

+ Ox, 1), (1.2.2)

de _ _9¢ |
—= -0 (1.2.3)

Conservation of heat energy {exact). An alternative derivation of con-
servation of heat energy has the advantage of our not being restricted to small
slices. The resulting approximate calculation of the limiting process (Ax — 0)
is avoided. We consider any finite segment (fromx = ato x = b) of the original
one-dimensional rod (see Fig. 1.2.2). We will investigate the conservation of
heat energy in this region. The total heat energy is f% e(x, 1) dx, the sum of the
contributions of the infinitesimal slices. Again it changes only due to heat energy
flowing through the side edges (x = a and x = b) and heat energy generated
inside the region, and thus (after canceling the constant A)

d [t b
FIJ’ edx = ¢(a,t) — $b, 1) + J Q dx. (1.2.4)
a a
Figure 1.2.2 Heat energy flowing into
0 x=a x=b ;  and out of a finite segment of a rod.
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Technically, an ordinary derivative d/dt appears in (1.2.4) since f% e dx depends
only on ¢, not also on x. However,

d J’ b I ® de

— dx = | —dx,

dt Ja ¢ o
if a and b are constants (and if e is continuous). This holds since inside the
integral the ordinary derivative now is taken keeping x fixed, and hence it must
be replaced by a partial derivative. Every term in (1.2.4) is now an ordinary
integral if we notice that

b
¢(av I) - ¢(b) t) = _L %%dx’

(this* being valid if ¢ is continuously differentiable). Consequently,

b
f<95+§9- )dx=0‘
a \ 0t ox

This integral must be zero for arbitrary a and b; the area under the curve must
be zero for arbitrary limits. This is possible only if the integrand itself is identically
zero.t Thus, we rederive (1.2.3) as

ae %
5= + Q. (1.2.5)

Equation (1.2.4), the integral conservation law, is more fundamental than the
differential form (1.2.5). Equation (1.2.5) is valid in the usual case in which the
physical variables are continuous.

~ further explanation of the minus sign preceding d¢ /ox is in order. For
example, if 3¢ /dx > 0 for a < x < b, then the heat flux ¢ is an increasing
function of x. The heat is flowing greater to the right at x = b thanatx = a
(assuming that b > a). Thus (neglecting any effects of sources Q), the heat
energy must decrease between x = a and x = b, resulting in the minus sign in
(1.2.5).

Temperature and specific heat. We usually describe materials by their
temperature, >

u(x, t) = temperature,

not their thermal density. Distinguishing between the concepts of temperature

* This is one of the fundamental theorems of calculus.

+ Most proofs of this result are inelegant. Suppose that f(x) is continuous and f4 f(x) dx = 0
for arbitrary ¢ and b. We wish to prove f(x) = 0 for all x. We can prove this by assuming that
there exists a point x, such that f(x,) # 0 and demonstrating a contradiction. If f{x,) # 0 and f(x)
is continuous, then there exists some region near x, in which f(x) is of one sign. Pick a and b to
be in this region, and hence 2 f(x) dx # 0 since f(x) is of ont sign throughout. This contradicts
the statement that f2 f(x) dx = 0, and hence it is impossible for f(x,) # 0. Equation (1.2.5) follows.

Sec. 1.2 Derivation of the Conduction of Heat in a One-Dimensional Rod 5



and thermal energy is not necessarily a trivial task. Only in the mid-1700s did
the existence of accurate experimental apparatus enable physicists to recognize
that it may take different amounts of thermal energy to raise two different
materials from one temperature to another larger temperature. This necessitates
the introduction of the specific heat (or heat capacity):

_ specific heat (the heat energy that must be supplied to a unit
mass of a substance to raise its temperature one unit).

In general, from experiments (and our definition) the specific heat ¢ of a material
depends on the temperature . For example, the thermal energy necessary to
raise a unit mass from 0°C to 1°C could be different from that needed to raise
the mass from 85°C to 86°C for the same substance. Heat flow problems with
the specific heat depending on the temperature are mathematically quite com-
plicated. (Exercise 1.2.1 briefly discusses this situation.) Often for restricted
temperature intervals, the specific heat is approximately independent of the
temperature. However, experiments suggest that different materials require dif-
ferent amounts of thermal energy to heat up. Since we would like to formulate
the correct equation in situations in which the composition of our one-dimensional
rod might vary from position to position, the specific heat will depend on x,
¢ = c¢(x). In many problems the rod is made of one material (a uniform rod), in
which case we will let the specific heat ¢ be a constant. In fact, most of the
solved problems in this text (as well as other books) correspond to this ap-
proximation, ¢ constant.

Thermal energy. The thermal energy in a thin slice is e(x, )A Ax. However,
it is also defined as the energy it takes to raise the temperature from a reference
temperature 0° to its actual temperature u(x, 7). Since the specific heat is independent
of temperature, the heat energy per unit mass is just c(x)u(x, f). We thus need
to introduce the mass density p(x):

p(x) = mass density (mass per unit volume),

allowing it to vary with x, possibly due to the rod being composed of nonuniform
material. The total mass of the thin slice is pA Ax. The total thermal energy
in any thin slice is thus c(x)u(x, 1) -+ pA Ax, so that

e(x, DA Ax = c(x)u(x, DpA Ax.
In this way we have explained the basic relationship between thermal energy
and temperature: o

e(x, 1) = c(x)p(x)u(x, t). : (1.2.6)

This states that the thermal energy per unit volume equals the thermal energy
per unit mass per unit degree times the temperature times the mass density (mass

-
»
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per unit volume). When the thermal energy density is eliminated using (1.2.6),
conservation of therma! enfrgy, (1.2.3) or (1.2.5), becomes

ou_ o
c(x)p(x) % - ax + Q. (1.2.7)

Fourier's law. Usually, (1.2.7) is regarded as one equation in two unknowns,
the temperature u(x, f) and the heat flux (flow per unit surface area per unit
time) ¢(x, 1). How and why does heat energy flow? In other words, we need
an expression for the dependence of the flow of heat energy on the temperature
field. First we summarize certain qualitative properties of heat flow with which
we are all familiar:

1. If the temperature is constant in a region, no heat energy flows.

2. If there are temperature differences, the heat energy flows from the hotter
region to the colder region.

3. The greater the temperature differences (for the same matenal) the greater
is the flow of heat energy.

4. The flow of heat energy will vary for different materials, even with the
same temperature differences. -

Fourier (1768-1830) recognized properties 1 through 4 and summarized them (as
well as numerous experiments) by the formula

¢ = —-K,—, (1.2.8)

known as Fourier’s law of heat conduction. Here’du/dx is the derivative of the
temperature; it is the slope of the temperature (as a function of x for fixed ¢);
it represents temperature differences (per unit length). Equation (1.2.8) states
that the heat flux is proportional to the temperature difference (per unit length).
If the temperature u« increases as x increases (i.e., the temperature is hotter to
the right, du/ax > 0), then we know (property 2) that heat energy flows to the
left. This explains the minus sign in (1.2.8).

We designate the coefficient of proportionality K,. It measures the ability
of the material to conduct heat and is called the thermal conductivity. Experiments
indicate that different materials conduct heat differently; K, depends on the
particular material. The larger K| is, the greater the flow of heat energy with
the same temperature differences. A material with a low value of K, would be
a poor conductor of heat energy (and ideally suited for home insulation). For
a rod composed of different materials, K, will be a function of x. Furthermore,
experiments show that the ability to conduct heat for most materials is different
at different temperatures, Ky(x, #). However, just as with the specific heat ¢,
the dependence on the temperature is often not important in particular problems.

Sec. 1.2 Derivation of the Conduction of Heat in a One-Dimensional Rod 7



