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Preface

The computing sciences are in their infancy. Although electronic computing
machines have been in existence since the 1930s, this area of study was not
formalized until the late 1960s when the Association for Computing Machinery
(ACM) published its first curriculum recommendations for four-year programs in
computer science. “Curriculum '68—Recommendations for Academic Programs in
Computer Science”! encouraged the study of discrete mathematics and calculus
and proposed a set of computing courses. “Curriculum ’'78—Recommendations
for the Undergraduate Program in Computer Science” updated the previous
recommendations of 1968 in response to the rapidly changing field of computing.
In 1984 and 1985 ACM published “Recommended Curriculum for CS1”? and
“Recommended Curriculum for CS2,”* which encouraged use of data structures
and software design and implementation in the early stages of a computer science
curriculum.

The curricula recommendations in the computing sciences were becoming
reactive rather than proactive as educators responded to the needs of a changing
computing profession. In the late 1980s a special task force was created to address
this issue. It published the “Report of the ACM Task Force on the Core of Computer
Science,” also called the “Denning Report.” The report established topic areas
that define the discipline this way:

The discipline of computing is the systematic study of algorithmic processes that
describe and transform information: their theory, analysis, design, efficiency,
implementation, and application. The fundamental question underlying all of
computing is, “What can be (efficiently) automated?”

A more general definition of computer science from the Denning Report
incorporates the paradigms of theory (mathematical approach), abstraction

' ACM Curriculum Committee on Computer Science. “Curriculum '68—Recommendations for Academic
Programs in Computer Science.” Communications of the ACM, 11, 3 (March 1968), 151-197.

2ACM Curriculum Committee on Computer Science. “Curriculum *78—Recommendations for the
Undergraduate Program in Computer Science.” Communications of the ACM, 22, 3 (March 1979),
147-166.

3Koffman, Elliot B., et al. “Recommended Curriculum for CS1: 1984.” Communications of the ACM,
27, 10 (October 1984), 998-1001.

*Koffman, Elliot B., et al. “Recommended Curriculum for CS2: 1984.” Communications of the ACM,
28, 8, (August 1985), 815-818.

SDenning, Peter, et al. “Report of the ACM Task Force on the Core of Computer Science.” ACM Press,
New York, 1988. Also known as the “Denning Report.” Reprinted in part in Communications of the
ACM, 32, 1 (January 1989), and in Computer (February 1989).

-
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(experimental approach), and design (engineering approach) within the following
nine topic areas:

Algorithms and data structures
Programming languages

Architecture

Numerical and symbolic computing
Operating systems

Software methodology and engineering
Database and information retrieval
Artificial intelligence and robotics
Human-computer communication

The report also encouraged sensitivity to the social context of computing.

Previous curriculum recommendations promoted depth in the beginning stages
of the curriculum through the early study of and concentration on programming.
The Denning Report suggests breadth in the study of computing as a whole
in the first stages of the discipline coupled with laboratory experiences, similar
to the study of biology, chemistry, and physics.

The ACM and the Computer Society of the Institute for Electrical and Electronic
Engineers (IEEE-CS) embraced the Denning Report. In 1991 both societies jointly
published “Computing Curricula 1991,® which serve a variety of computing
programs. These recommendations do not prescribe courses for study. Instead
they decompose the nine topic areas into knowledge units that can be arranged
for an individual program of study. Such a program should consist of the nine
topic areas and reflect one or more of the paradigms of theory, abstraction, and
design. Many of these concepts are also reflected in other ACM publications such
as Computing Curricula Guidelines for Associate Degree Programs’ and the Model
High School Computer Science Curriculum.?

GOALS OF THIS TEXT

This text arose from the emerging demand for an introductory, broad-range, or
breadth-first book on computer science. We believe that using the breadth-first

STucker, Allen B., et al. “Computing Curricula 1991—Report of the ACM/IEEE-Computer Society Joint
Curriculum Task Force,” ACM Press, New York, 1991. Reprinted in summary in Communications of
the ACM (June 1991), 68-84.

7ACM Two-Year College Computing Curricula Task Force. “Computing Curricula Guidelines for
Associate Degree Programs—Computing Sciences,” ACM Press, New York, 1993.

8ACM Task Force of the Pre-College Committee. “ACM Model High School Computer Science
Curriculum,” ACM Press, New York, 1993.
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approach will not interfere with the remainder of the typical undergraduate
computer science cutriculum. Rather it should increase class motivation since
students will have an overall sense of the field instead of merely a narrow-band
knowledge of programming,

Breadth-First versus Depth-First The traditional, depth-first approach to
teaching computer science generally consists of a two- or three-semester exposure
to a particular procedural language like Pascal with emphasis on syntax, algorithm
design, and data structures. Other topics in computer science are generally
ignored. This programming approach reinforces the misconception that computer
science is the study of programming syntax and applications. Although it is true
that programmers do (mostly) programming, computer scientists deal with com-
puting, using programming as a tool with which to explore and develop ideas.

The breadth-first approach, on the other hand, gives exposure to the es-
sential elements of computing. Selected topics include: machine architecture,
algorithms, data communications, complexity theory, database design, artificial
intelligence, information retrieval, and software engineering. Programming is in-
tegrated throughout the topics as a tool for exploring these aspects of the field.
Depth of knowledge is relegated to other courses taken in the remaining years of
undergraduate and graduate study.

We believe that students should be exposed to the various aspects of computing
early in their education and sample the breadth of the discipline so that they will
have a clearer understanding of what the field comprises. It is for this reason that
we adhere to the principles promoted in the “Denning Report” and in “Computing
Curricula 1991.”

NOTE TO THE PROFESSOR

Philosophy For many instructors, teaching a breadth-first course in computer
science is a novelty. The range of topics may even seem intimidating, especially
when they are intended for an audience of first-year majors. Experience has shown
us, however, that students gravitate to the breadth topics of computer science,
which stimulate new ideas for them and generate meaningful discussions.

We do not mean to teach beginning students all of computer science or all
the intricacies of the Pascal language in a one-year course. It is more important
to let students sample areas of the discipline in small doses and develop a basic
understanding of Pascal. Some topics are taken to a greater level of detail to give
instructors more flexibility in the presentation of the material. This detail can be
omitted without loss of continuity.

Implementation The material in the text is designed for first-year undergrad-
uate majors and minors in computer science for presentation over two semesters.
Accelerated programs can also use the text for a one-semester course. Upon
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completion, students will have developed a broad foundational knowledge of
the principal elements in the science of computing and a working knowledge of

Pascal.

The following table provides suggested coverage for a one-year sequence with
three possible tracks. The A-track is the most complete, needing full coverage

CHAPTER SECTIONS A-TRACK SECTIONS B-TRACK SECTIONS C-TRACK
1 1,2,3 1,23 1,23
2 1,2 1,2 1,2
3 1,23 - 1,23 1,23
4 1,2,3 12 1
5 1,23 1,23 1,23
6 1,2 1,2 1T
7 1,2, 3 1,23 1,23
8 1,2 1, 2* 1
9 1,2 1,2 1,2

10 1,2 1,2 - 1
1 1,23 | 1,23 12,3
12 1,2 1 1
13 - 1,23 1,2 1, 2*
14 B 1,2 1,2 1
15 1,2 1, 2* B 1
16 1,2 1,2* 1
17 1,2, 3* 1, 2* 1
18 1,2 1%, 2 - 2¢
19 1,2 1,2 1
Required sections 45 36 29

with one optional section. The B-track offers more flexibility, with 10 sections
that are optional. The C-track is the minimum necessary coverage for a breadth-
first approach. Asterisks (*) show optional sections. All tracks ensure sufficient
coverage of programming methodology and design.

Students completing this text will have gained a general understanding of the
significant topic areas of study in the field of computer science. In addition, they
will have a substantial preparation in Pascal programming. We believe that the
integrated breadth-first approach gives students a strong foundation in the subject
and the skills to become knowledgeable and effective computer scientists. This
knowledge will be a solid platform on which students can build a career in

computing.
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SUPPLEMENTS

The following materials are available to accompany the text.

1. An instructor’s manual with suggested lesson plans and solutions to most
€XErcises.

2. A computer disk for instructors containing program samples and suggested
questions for examinations.
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To the Student

You are probably beginning this course with some exposure to computers and
introductory programming. This exposure can manifest itself in many forms, from
casual self-taught knowledge to formal courses. Additionally, you are expected to
have experienced rudimentary problem solving through the study of high school
mathematics and science.

It would be beneficial for you to study discrete mathematics concurrently with
this book. That branch of mathematics presents many concepts such as sets, logic,
graphs, and recursion that are essential to your understanding of computing.
Although some introductory discrete mathematics is included in the book, we
believe that these concepts are important enough for you to study them in depth
in a separate setting.

PEDAGOGICAL FEATURES OF THE TEXT

The text contains the following pedagogical features to help you learn and apply
basic concepts.

Chapter Opener Each chapter begins with a photograph related to the theme
of the chapter. The chapter opener contains two features: Learning Goals and
Chapter Activity. Learning Goals are a series of statements that highlight what you
learn from the chapter. Chapter Activity is some endeavor or problem that you
should be able to do after completing the chapter. This is intended as a “sneak
preview” of the level of the material and provides a framework for the rest of the
chapter.

Section Activities Each section contains activities to engage the reader. These
include:

Perspective—short vignettes with bistorical perspectives and curiosities, so-
cial and ethical issues, mathematical reminders, programming tips, human-
computer communication issues, and other topics of interest. These exposures
add different views of the subject and raise the social consciousness of those
entering the profession.

Before You Go On—sbhort, on-the-spot exercises whose solution can be drawn
JSfrom the text immediately preceding them.

Exercises Each section ends with a set of exercises of increasing difficulty in a
variety of formats. The exercises are arranged as follows.
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TO THE STUDENT

A Concept Check consisting of 12 short questions grouped into true-false,
multiple choice, and fill-in formats. Answers to these questions can be easily
extracted from the text.

The Concept Check is followed by three sets of open-ended questions of
increasing difficulty.

Set A questions are relatively easy and all students should be able to find the
right answers with a minimum of effort.

Set B questions are moderate to challenging, occasionally needing substantial
time and effort.

Set C questions ofien include laboratory exercises to be done using the
computer. The suggested laboratory activities in Set C are designed to motivate
and engage you in closed as well as open laboratory activities.

Answers to many of these exercises are given after the appendixes.

The appendixes include references to the Pascal language, reserved words,
standard names, operators, ASCII and EBCDIC character codes, and a derivation
of Simpson’s rule. An index is also supplied.

ACTIVE LEARNING

Computer science can only be mastered by active participation on the part of the
student. This means carefully reading the material, doing as many of the exercises
as possible, participating in classroom discussions, and dedicating sufficient time
to prepare and properly execute computer programs. There are no shortcuts.

Computer science is filled with thorny technical and theoretical issues needing
analytical, nonintuitive thinking. Many of the real-world problems currently under
investigation may take years or decades to solve, if ever! This new and rich area
of study needs patience and perseverance. Try not to get too frustrated if things
do not fall into place the first time you encounter them. Be persistent and ask
questions. Become an active student!

PAUL NAGIN
JOHN IMPAGLIAZZO

1995 January
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