COMPUTER
SCIENCE

A Breadth-First
Approach with Pascal

COMPUTER
SCIENCE

A Breadlth-First Approach with Pascal

Paul Nagin
John Impagliazzo

Hofstra University ¢
Hempstead, New York

John Wiley & Sons

New York Chichester Brisbane Toronto Singapore

ACQUISITIONS EDITOR ~ Steven Elliot
MARKETING MANAGER Susan Elbe

SENIOR PRODUCTION EDITOR Nancy Prinz
COVER DESIGNER Dawn L. Stanley
INTERIOR DESIGN Levavi & Levavi

COVER ART Otherworld Artyfax
MANUFACTURING MANAGER Susan Stetzer
ILLUSTRATION COORDINATOR Rosa Bryant

This book was set in ITC Garamond Light by Publication Services and printed and bound
by R. R. Donnelley & Sons, Crawfordsville. The cover was printed by Phoenix.

Recognizing the importance of preserving what has been written, it is a policy of John Wiley & Sons,
Inc. to have books of enduring value published in the United States printed on acid-free paper, and
we exert our best efforts to that end.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

Microsoft, MS, and MS-DOS are registered trademarks, and Windows and Windows NT are trademarks
of Microsoft Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories.

Copyright © 1995 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108
of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
Requests for permission or further information should be addressed to the Permissions Department,
John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data
Nagin, Paul A.
Computer science : a breadth-first approach with Pascal / by Paul
Nagin and John Impagliazzo.
p. cm.
Includes index.
ISBN 0-471-31198-7 (paper : acid-free paper)
1. Computer science. 2. Pascal (Computer program language)
L. Impagliazzo, John. II. Title.
QA76.N273 1995
004—dc20 94-45368
CIP

Printed in the United States of America

10 9 87 65 43 21

Preface

The computing sciences are in their infancy. Although electronic computing
machines have been in existence since the 1930s, this area of study was not
formalized until the late 1960s when the Association for Computing Machinery
(ACM) published its first curriculum recommendations for four-year programs in
computer science. “Curriculum '68—Recommendations for Academic Programs in
Computer Science”! encouraged the study of discrete mathematics and calculus
and proposed a set of computing courses. “Curriculum ’'78—Recommendations
for the Undergraduate Program in Computer Science” updated the previous
recommendations of 1968 in response to the rapidly changing field of computing.
In 1984 and 1985 ACM published “Recommended Curriculum for CS1”? and
“Recommended Curriculum for CS2,”* which encouraged use of data structures
and software design and implementation in the early stages of a computer science
curriculum.

The curricula recommendations in the computing sciences were becoming
reactive rather than proactive as educators responded to the needs of a changing
computing profession. In the late 1980s a special task force was created to address
this issue. It published the “Report of the ACM Task Force on the Core of Computer
Science,” also called the “Denning Report.” The report established topic areas
that define the discipline this way:

The discipline of computing is the systematic study of algorithmic processes that
describe and transform information: their theory, analysis, design, efficiency,
implementation, and application. The fundamental question underlying all of
computing is, “What can be (efficiently) automated?”

A more general definition of computer science from the Denning Report
incorporates the paradigms of theory (mathematical approach), abstraction

' ACM Curriculum Committee on Computer Science. “Curriculum '68—Recommendations for Academic
Programs in Computer Science.” Communications of the ACM, 11, 3 (March 1968), 151-197.

2ACM Curriculum Committee on Computer Science. “Curriculum *78—Recommendations for the
Undergraduate Program in Computer Science.” Communications of the ACM, 22, 3 (March 1979),
147-166.

3Koffman, Elliot B., et al. “Recommended Curriculum for CS1: 1984.” Communications of the ACM,
27, 10 (October 1984), 998-1001.

*Koffman, Elliot B., et al. “Recommended Curriculum for CS2: 1984.” Communications of the ACM,
28, 8, (August 1985), 815-818.

SDenning, Peter, et al. “Report of the ACM Task Force on the Core of Computer Science.” ACM Press,
New York, 1988. Also known as the “Denning Report.” Reprinted in part in Communications of the
ACM, 32, 1 (January 1989), and in Computer (February 1989).

-

vi

PREFACE

(experimental approach), and design (engineering approach) within the following
nine topic areas:

Algorithms and data structures
Programming languages

Architecture

Numerical and symbolic computing
Operating systems

Software methodology and engineering
Database and information retrieval
Artificial intelligence and robotics
Human-computer communication

The report also encouraged sensitivity to the social context of computing.

Previous curriculum recommendations promoted depth in the beginning stages
of the curriculum through the early study of and concentration on programming.
The Denning Report suggests breadth in the study of computing as a whole
in the first stages of the discipline coupled with laboratory experiences, similar
to the study of biology, chemistry, and physics.

The ACM and the Computer Society of the Institute for Electrical and Electronic
Engineers (IEEE-CS) embraced the Denning Report. In 1991 both societies jointly
published “Computing Curricula 1991,® which serve a variety of computing
programs. These recommendations do not prescribe courses for study. Instead
they decompose the nine topic areas into knowledge units that can be arranged
for an individual program of study. Such a program should consist of the nine
topic areas and reflect one or more of the paradigms of theory, abstraction, and
design. Many of these concepts are also reflected in other ACM publications such
as Computing Curricula Guidelines for Associate Degree Programs’ and the Model
High School Computer Science Curriculum.?

GOALS OF THIS TEXT

This text arose from the emerging demand for an introductory, broad-range, or
breadth-first book on computer science. We believe that using the breadth-first

STucker, Allen B., et al. “Computing Curricula 1991—Report of the ACM/IEEE-Computer Society Joint
Curriculum Task Force,” ACM Press, New York, 1991. Reprinted in summary in Communications of
the ACM (June 1991), 68-84.

7ACM Two-Year College Computing Curricula Task Force. “Computing Curricula Guidelines for
Associate Degree Programs—Computing Sciences,” ACM Press, New York, 1993.

8ACM Task Force of the Pre-College Committee. “ACM Model High School Computer Science
Curriculum,” ACM Press, New York, 1993.

PREFACE Vil

approach will not interfere with the remainder of the typical undergraduate
computer science cutriculum. Rather it should increase class motivation since
students will have an overall sense of the field instead of merely a narrow-band
knowledge of programming,

Breadth-First versus Depth-First The traditional, depth-first approach to
teaching computer science generally consists of a two- or three-semester exposure
to a particular procedural language like Pascal with emphasis on syntax, algorithm
design, and data structures. Other topics in computer science are generally
ignored. This programming approach reinforces the misconception that computer
science is the study of programming syntax and applications. Although it is true
that programmers do (mostly) programming, computer scientists deal with com-
puting, using programming as a tool with which to explore and develop ideas.

The breadth-first approach, on the other hand, gives exposure to the es-
sential elements of computing. Selected topics include: machine architecture,
algorithms, data communications, complexity theory, database design, artificial
intelligence, information retrieval, and software engineering. Programming is in-
tegrated throughout the topics as a tool for exploring these aspects of the field.
Depth of knowledge is relegated to other courses taken in the remaining years of
undergraduate and graduate study.

We believe that students should be exposed to the various aspects of computing
early in their education and sample the breadth of the discipline so that they will
have a clearer understanding of what the field comprises. It is for this reason that
we adhere to the principles promoted in the “Denning Report” and in “Computing
Curricula 1991.”

NOTE TO THE PROFESSOR

Philosophy For many instructors, teaching a breadth-first course in computer
science is a novelty. The range of topics may even seem intimidating, especially
when they are intended for an audience of first-year majors. Experience has shown
us, however, that students gravitate to the breadth topics of computer science,
which stimulate new ideas for them and generate meaningful discussions.

We do not mean to teach beginning students all of computer science or all
the intricacies of the Pascal language in a one-year course. It is more important
to let students sample areas of the discipline in small doses and develop a basic
understanding of Pascal. Some topics are taken to a greater level of detail to give
instructors more flexibility in the presentation of the material. This detail can be
omitted without loss of continuity.

Implementation The material in the text is designed for first-year undergrad-
uate majors and minors in computer science for presentation over two semesters.
Accelerated programs can also use the text for a one-semester course. Upon

PREFACE

completion, students will have developed a broad foundational knowledge of
the principal elements in the science of computing and a working knowledge of

Pascal.

The following table provides suggested coverage for a one-year sequence with
three possible tracks. The A-track is the most complete, needing full coverage

CHAPTER SECTIONS A-TRACK SECTIONS B-TRACK SECTIONS C-TRACK
1 1,2,3 1,23 1,23
2 1,2 1,2 1,2
3 1,23 - 1,23 1,23
4 1,2,3 12 1
5 1,23 1,23 1,23
6 1,2 1,2 1T
7 1,2, 3 1,23 1,23
8 1,2 1, 2* 1
9 1,2 1,2 1,2

10 1,2 1,2 - 1
1 1,23 | 1,23 12,3
12 1,2 1 1
13 - 1,23 1,2 1, 2*
14 B 1,2 1,2 1
15 1,2 1, 2* B 1
16 1,2 1,2* 1
17 1,2, 3* 1, 2* 1
18 1,2 1%, 2 - 2¢
19 1,2 1,2 1
Required sections 45 36 29

with one optional section. The B-track offers more flexibility, with 10 sections
that are optional. The C-track is the minimum necessary coverage for a breadth-
first approach. Asterisks (*) show optional sections. All tracks ensure sufficient
coverage of programming methodology and design.

Students completing this text will have gained a general understanding of the
significant topic areas of study in the field of computer science. In addition, they
will have a substantial preparation in Pascal programming. We believe that the
integrated breadth-first approach gives students a strong foundation in the subject
and the skills to become knowledgeable and effective computer scientists. This
knowledge will be a solid platform on which students can build a career in

computing.

PREFACE iX

SUPPLEMENTS

The following materials are available to accompany the text.

1. An instructor’s manual with suggested lesson plans and solutions to most
€XErcises.

2. A computer disk for instructors containing program samples and suggested
questions for examinations.

ACKNOWLEDGMENTS

We wish to acknowledge the contributions made to the manuscript by our
students, colleagues, reviewers, and editors. We thank the many students who
participated in the class testing of the material and in particular Alan P. Baker,
Andrew Botwinick, Richard N. Gruenfelder, Jeanette R. Sones, David J. Stecher,
and Frank P. Tufano for their assistance in developing and testing some of the
programs. A special thanks to our Hofstra colleagues, Thomas B. Steel, Jr. and
Olga Salizkiy, for their comments and suggestions in the early stages of manuscript
development.

The reviewers of the manuscript made fine suggestions that were incorporated
in this text. We extend our heartfelt thanks to:

Lillian Cassel Robert D. Campbell
Villanova University Manatee Community College
Marsha Moroh John D. McGregor

College of Staten Island Clemson University

Karl J. Klee Eleanor Quinlan

Jamestown Community College Obio State University

Vaidy S. Sunderam Linda Werner

Emory University University of California: Santa Cruz
Ann Ford Clifford Shaffer

University of Michigan Virginia Tech

Ken Collier Elizabeth Adams

Northern Arizona University Richard Stockton College
Maria Petrie Dennis J. Frailey

Florida Atlantic University Southern Methodist University

Our work was made easier because of their comments and contributions. To these
professionals we are most grateful.

We also wish to thank those associated with John Wiley & Sons. We are
much appreciative of the support given by our publisher, Wayne Anderson, our

X PREFACE

executive editor, Charity Robey, and by Nancy Prinz, Christopher Curioli, Dawn
Stanley, Susan Elbe, and Lisa Passmore. A very special thanks to our development
editor Judith Goode for her insightful comments and her meticulous professional
skill. We are most grateful to our editor, Steven Elliot, for his many hours of
personal dedication to this work.

Last but not least, we would like to thank our families for their untiring support.

To the Student

You are probably beginning this course with some exposure to computers and
introductory programming. This exposure can manifest itself in many forms, from
casual self-taught knowledge to formal courses. Additionally, you are expected to
have experienced rudimentary problem solving through the study of high school
mathematics and science.

It would be beneficial for you to study discrete mathematics concurrently with
this book. That branch of mathematics presents many concepts such as sets, logic,
graphs, and recursion that are essential to your understanding of computing.
Although some introductory discrete mathematics is included in the book, we
believe that these concepts are important enough for you to study them in depth
in a separate setting.

PEDAGOGICAL FEATURES OF THE TEXT

The text contains the following pedagogical features to help you learn and apply
basic concepts.

Chapter Opener Each chapter begins with a photograph related to the theme
of the chapter. The chapter opener contains two features: Learning Goals and
Chapter Activity. Learning Goals are a series of statements that highlight what you
learn from the chapter. Chapter Activity is some endeavor or problem that you
should be able to do after completing the chapter. This is intended as a “sneak
preview” of the level of the material and provides a framework for the rest of the
chapter.

Section Activities Each section contains activities to engage the reader. These
include:

Perspective—short vignettes with bistorical perspectives and curiosities, so-
cial and ethical issues, mathematical reminders, programming tips, human-
computer communication issues, and other topics of interest. These exposures
add different views of the subject and raise the social consciousness of those
entering the profession.

Before You Go On—sbhort, on-the-spot exercises whose solution can be drawn
JSfrom the text immediately preceding them.

Exercises Each section ends with a set of exercises of increasing difficulty in a
variety of formats. The exercises are arranged as follows.

X

TO THE STUDENT

A Concept Check consisting of 12 short questions grouped into true-false,
multiple choice, and fill-in formats. Answers to these questions can be easily
extracted from the text.

The Concept Check is followed by three sets of open-ended questions of
increasing difficulty.

Set A questions are relatively easy and all students should be able to find the
right answers with a minimum of effort.

Set B questions are moderate to challenging, occasionally needing substantial
time and effort.

Set C questions ofien include laboratory exercises to be done using the
computer. The suggested laboratory activities in Set C are designed to motivate
and engage you in closed as well as open laboratory activities.

Answers to many of these exercises are given after the appendixes.

The appendixes include references to the Pascal language, reserved words,
standard names, operators, ASCII and EBCDIC character codes, and a derivation
of Simpson’s rule. An index is also supplied.

ACTIVE LEARNING

Computer science can only be mastered by active participation on the part of the
student. This means carefully reading the material, doing as many of the exercises
as possible, participating in classroom discussions, and dedicating sufficient time
to prepare and properly execute computer programs. There are no shortcuts.

Computer science is filled with thorny technical and theoretical issues needing
analytical, nonintuitive thinking. Many of the real-world problems currently under
investigation may take years or decades to solve, if ever! This new and rich area
of study needs patience and perseverance. Try not to get too frustrated if things
do not fall into place the first time you encounter them. Be persistent and ask
questions. Become an active student!

PAUL NAGIN
JOHN IMPAGLIAZZO

1995 January

Brief Contents

1 Introduction to Computing Systems 1
1.1 A Panorama of Computer Science 3
1.2 Computer Hardware and Software 10
1.3 Computing Perspectives 22

2 Problem-Solving Concepts 35
2.1 The Analytic Approach 37
2.2 The Algorithmic Approach 43

3 Elements of the Pascal Language 61
-3 Background and Structure of Pascal 63
3.2 Data Types, Variables, and Input/Output 71
3.3 Arithmetic in Pascal 80

4 Computer Logic and Architecture 87
4.1 Number Systems 89
4.2 Logic and Computers 109
4.3 Machine Representation of Numbers 126

5 Modules and Control Structures 137
5.1 Modules 139
5.2 Selection Structures 147
5.3 Looping Structures 164

6 Operating Systems 182
6.1 Windows to Hardware 184
6.2 System Tools and Virtual Memory 193

7 Arrays 205
7.1 Overview of Arrays 207
7.2 Arrays and Modules 218
7.3 Higher-Dimensional Arrays 233

8 Data Communications 246

8.1 Communications Overview 248
8.2 Parity and Error in Communications 261

9 String Processing 280
9.1 Overview of Strings 282
9.2 Applications of Text Processing 290
10 Software Engineering 304

10.1 The Software Engineering Approach 306
10.2 The Software Life Cycle: Two Applications 313

Xiv

BRIEF CONTENTS

11

12

13

14

15

16

17

18

19

Data Structures

11.1 Tools for Creating Data Structures 330
11.2 ADT Stacks 343

11.3 ADT Queues 358

Databases
12.1 An Overview of Files and Databases 374
12.2 Logical Database Models 388

Dynamic Lists

13.1 Memory Allocation and Dynamically Linked Stacks 413
13.2 Dynamically Linked Queues 428

13.3 Generalized Linked Lists 436

Programming Languages
14.1 Overview of Programming Languages 453
14.2 Language Paradigms 462

Recursive Algorithms
15.1 Thinking Recursively 476
15.2 Applying Recursion 486

Searching and Sorting Algorithms
16.1 Linear and Binary Search 500
16.2 Sorting Modules 508

Numerical Algorithms

17.1 Zeros of Functions 528

17.2 Solving Systems of Equations 553
17.3 Differentiation and Integration 575

Theoretical Perspectives in Computing
18.1 Finite-State and Turing Machines 602
18.2 Algorithmic Efficiency and Complexity 614

Artificial Intelligence
19.1 Areas of Inquiry 636
19.2 Case Study: Computer Vision 643

328

372

411

451

474

498

526

600

634

Contents

1 Introduction to Computing Systems 1
1.1 A Panorama of Computer Science 3
Introduction, 3
1.1.1 The Elements of Computing, 3
1.1.2 The Social Context of Computing, 5
1.1.3 End-User Applications, 7
Exercises 1.1, 8
1.2 Computer Hardware and Software 10
Introduction, 10
1.2.1 Preliminaries, 10
1.2.2 Peripberal Input and Output Devices, 11
1.2.3 More on Hardware Basics, 15
1.2.4 Software Basics, 17
1.2.5 Communications Basics, 18
Exercises 1.2, 19
1.3 Computing Perspectives 22
Introduction, 22
1.3.1 Evolution of Computer Hardware and
Software, 22
1.3.2 wvon Neumann and Non—von Neumann
Architectures, 28
1.3.3 Professional Roles, 32
1.3.4 The Future of Computing, 32
Exercises 1.3, 33

2 Problem-Solving Concepts 35
2.1 The Analytic Approach 37
Introduction, 37
2.1.1 Problem-Solving Approaches, 37
2.1.2 The Analytic Approach, 38
2.1.3 Unsolvable Problems, 41
Exercises 2.1, 41
2.2 The Algorithmic Approach 43
Introduction, 43
2.2.1 Algoritbms, 43
2.2.2 Pbhases of Algorithmic Problem Solving, 47
223 Sequence, 47
2.2.4 Selection, 51
2.2.5 Repetition, 53

xvi

CONTENTS

2.2:6

Conditional Looping, 54
Exercises 2.2, 57

3 Elements of the Pascal Language
3.1 Background and Structure of Pascal 63
Introduction, 63

3.2

3.3

3.1.1
312
3.1.3

History of Pascal, 63

A Simple Program in Pascal, 63

A High-Quality Pascal Program, 66
Exercises 3.1, 69

Data Types, Variables, and Input/Output 71
Introduction, 71

3.2.1
3.2.2
323
324
325
3.2.6
3.2.7
3.2.8

INTEGER Data Type, 71
REAL Data Type, 72
CHAR Data Type, 72
BOOLEAN Data Type, 73
Naming Conventions, 73
Symbolic Constants, 75
Variables, 76

Input and Output, 76
Exercises 3.2, 78

Arithmetic in Pascal 80
Introduction, 80

3.3.1
332
333
334

Operator Precedence, 80
Integer Aritbmetic, 81
Mixed-Mode Arithmetic, 82
Assignment Statements, 83
Exercises 3.3, 84

4 Computer Logic and Architecture
4.1 Number Systems 89
Introduction, 89

4.2

4.1.1
4.1.2
4.1.3
414
4.15
416
4.1.7

Binary Codes: ASCH and EBCDIC, 89
Positional Notation, 91

Binary to Decimal Conversion, 93
Decimal to Binary Conversion, 97

Negative Numbers in Twos Complement Form, 101

Addition and Multiplication, 103
Subtraction and Division, 106
Exercises 4.1, 108

Logic and Computers 109
Introduction, 109

421
4.22
4.2.3
424
425
4.2.6

Logic and Binary Systems, 110

Truth Tables: NOT, AND, OR, XOR, 111

Logic Gates, 113

Logic Functions Using Gates, 114

Equivalent Circuits, 116

Relational and Logical Operators in Pascal, 120
Exercises 4.2, 124

61

87

4.3 Machine Representation of Numbers 126

Introduction, 126

4.3.1 Integers and Real Numbers, 126

4.3.2 Floating-Point Numbers, 128

4.3.3 Precision and Accuracy, 132

4.3.4 Machine and Program Considerations, 134
Exercises 4.3, 135

Modules and Control Structures

5.1

5.2

5.3

Modules 139
Introduction, 139
5.1.1 Writing PROCEDURES, 139
5.1.2 Writing FUNCTIONS, 141
Exercises 5.1, 146
Selection Structures 147
Introduction, 147
5.2.1 One-Way Selection Using IF... THEN, 147
5.2.2 Two-Way Selection Using IF...THEN...ELSE, 150
5.2.3 Multiple Selection Using the IF Ladder, 153
5.2.4 Multiple Selection Using CASE, 158
Exercises 5.2, 163
Looping Structures 164
Introduction, 164
5.3.1 Conditional Looping Using WHILE, 165
5.3.2 Conditional Looping Using REPEAT...UNTIL, 167
5.3.3 Iterative Looping Using FOR, 169
5.3.4 Nested Loops, 171
Exercises 5.3, 177

Operating Systems

6.1

6.2

Windows to Hardware 184
Introduction, 184
6.1.1 The System Executive, 184
6.1.2 Time Sharing, 186
6.1.3 Scheduling Algorithms, 189
6.1.4 Protection and Security, 191
* Exercises 6.1, 192
System Tools and Virtual Memory 193
Introduction, 193
6.2.1 Editors and Debuggers, 194
6.2.2 Assemblers, Compilers, and Interpreters, 194
6.2.3 Linkers and Loaders, 196
6.2.4 Virtual Memory, 197
6.2.5 Pages and Page Frames, 197
6.2.6 Other Considerations with Virtual Memory, 200
6.2.7 Large-Scale and Personal Computers, 202
Exercises 6.2, 203

CONTENTS XVii

137

182

Xviii CONTENTS

7 Arrays 205

7.1

7.2

7.3

Overview of Arrays 207

Introduction, 207

7.1.1 Array Basics, 208

7.1.2 Using Arrays, 210
Exercises 7.1, 217

Arrays and Modules 218

Introduction, 218

7.2.1 Passing Arrays, 219

7.2.2 Output Parameters, 224
Exercises 7.2, 231

Higher-Dimensional Arrays 233

Introduction, 233

7.3.1 Matrices, 233

7.3.2 Passing Multidimensional Arrays, 239
Exercises 7.3, 244

8 Data Communications 246

8.1

8.2

Communications Overview 248
Introduction, 248
8.1.1 Data Communications and Standards, 248
8.1.2 Digital and Analog Transmission, 250
8.1.3 Modems, 252
8.1.4 Communications Media and Modalities, 253
8.1.5 Protocols, 256

Exercises 8.1, 259
Parity and Error in Communications 261
Introduction, 261
8.2.1 Parity, 261
8.2.2 Error Detection and Correction, 264
823 Hamming Codes and Error Detection, 265
8.2.4 Error-Correcting Codes, 267

Exercises 8.2, 277

9 String Processing 280

9.1

9.2

Overview of Strings 282
Introduction, 282
9.1.1 Fundamentals of Strings, 282
9.1.2 String Input/Output, 283
9.1.3 String-Processing Modules, 285
Exercises 9.1, 289
Applications of Processing 290
Introduction, 290
9.2.1 Text Filtering, 290
9.2.2 Automatic Sentence Generation, 293
9.2.3 Text Editing, 297
Exercises 9.2, 301

