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Preface

This book evolved during my teaching of courses in statistics and
quantitative methods to advanced undergraduate and graduate students
in psychology and social science off and on for nearly 40 years.
Apologies are due the students who happened to fall in earlier classes,
before I had learned how to teach this kind of material effectively, and
appreciation is due to many collaborators and assistants. In the latter
connection, I owe a special debt to Robert R. Rosenthal, with whom I
shared a graduate course at Harvard University for 8 years and from
whom I have learned a good deal about how to help students get across
the gap between theory and application. I also want to mention a
succession of outstanding teaching assistants at Harvard, including
Beverly Chew, Jean MacMillan, and most notably, Kris Kirby, who
caught seemingly innumerable glitches in draft chapters of this volume
and brought my attention to many possibilities for improving commu-
nicability. Finally, I wish to thank Nancy Rury, who accomplished the all
but impossible task of converting my handwritten drafts into neat
typescript, Kay Estes, who prepared the index, and my longtime friend
and publisher, Lawrence Erlbaum, who personally supervised the final
transition from typescript into print.

W.K. E.
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Introduction

WHAT IS NEW?

The teacher of a graduate course in statistics for psychologists or other
behavioral scientists now has so many excellent texts available (for
example, Hays, 1988; Hildebrand, 1986; Howell, 1987; Kirk, 1982;
Loftus & Loftus, 1988) that one may well ask, “Why should another be
needed?” The atypically small size of this volume may suggest the
answer: [ set out to supplement, not to duplicate, available textbooks. I
assume that the reader has had or is taking a course that covers the
elements of probability, sampling distributions, and the computation of
analyses of variance and regression on balanced data sets obtained from
simple, standard designs. I assume further that the reader shares with
this author at least the following needs:

1. Capability of doing statistical analyses by means of statistical
programs with some insight into what is going on behind the
scenes.

2. Understanding of the basis for the various rules given in
textbooks about admissable tests in various common designs.

3. Guidance in the calculation and use of statistics never fully
covered in standard texts (e.g., effect size measures, standard
errors, and contrasts in various types of designs).
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4. Deeper insight into the relationship between analysis of variance
and regression and the ways of getting the best of both ap-
proaches out of statistical packages.

5. Help in dealing with the hazards of unbalanced data sets.

The state of the art in statistics for psychological research is changing
rapidly and with it what the researcher needs to learn. The prototype of
a second course for prospective research workers in behavioral science is
a concentration on mastering methods of calculating analyses of
variance (henceforth ANOVAs) for a variety of common research
designs. However, the hand calculation of ANOVAs is rapidly going out
of style. Often (unhappily), even before learning a modicum of
statistics, the student in psychology enters research data into computer
programs and then seeks help in decoding a massive output of summary
tables. The reward is a large increase in output for a given amount of
time and effort on the input side. The negative aspect is similar to that
of putting powerful machines into untrained hands. The ability to
obtain statistical analyses soon outruns the ability to interpret them.
Thus, the present-day student needs more theory than his predecessors
were even allowed to see in order to be able to cope with the outputs of
computer programs.

Meeting these needs requires some understanding of the models that
underlie statistical methods and how the models can be applied to guide
the solution of new problems not covered by textbook examples.
However, although the mathematics needed for practical purposes is not
very deep, the difficulties of coping with mathematical formalisms and
details of derivations have tended to make the needed approach
inaccessible to all but a few behavioral scientists. In this connection, I
have been struck by the findings of current research in cognitive science
that the early development of children’s understanding of science and
mathematics is greatly facilitated if the qualitative understanding of
physical or mathematical models precedes the task of dealing with
computational details. Thus, I have wondered whether it may be
possible to convey the essentials of statistical models by means of
simplified representations that eliminate most of the complexities of
notation and focus on qualitative understanding of the models. An
individual who learns to think in terms of models in this way will not be
able to do much in the way of new derivations for novel problems but
perhaps will be equipped to find his/her way intelligently through many
of the difficulties of interpreting research data and in particular to reap
the advantages of statistical packages with some confidence in how to
interpret the outputs.
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I have no magic bullet to offer, but over many years of teaching
research design and quantitative methods in psychology, I have devel-
oped some ways of simplifying the presentations of concepts and
derivations so as to make the substance of important statistical results
available to the mathematically unskilled research worker. An important
boost to this effort has come quite recently in the appearance of some
readily available microcomputer programs, most notably SYSTAT, that
encourage, even in some instances require, the user to plan the analysis
of a statistical design in relation to the mathematical model that underlies
the computations. In this book, I follow a path somewhere between the
level of the SYSTAT manual (Wilkinson, 1986), in which models appear
only in the form of highly simplified and stylized equations that serve as
instructions to the program, and that of treatises like Winer (1971), in
which models are presented fully but with so much detail of notation and
derivation as to be inaccessible to all but a few users.

There is no new statistical theory in this book. The basic theory I have
drawn on is well covered in Graybill (1961), Searle (1987), and Winer
(1971). My contribution has been mostly to abstract, reorganize, and
apply the theoretical results to problems that arise frequently in psycho-
logical research and especially to find ways of simplifying the presenta-
tion of models and operations with models so as to make them readily
available to students and investigators who lack either mathematical
background or taste for doing derivations, or both. For the experienced
investigator, I include material on model testing and related topics that
is not covered in textbooks or other readily available sources.

A COMPARISON OF STATISTICAL AND SCIENTIFIC
MODELS

My view of statistical models and their applications as simply a special
case of the uses of formal models in scientific theory and research may
seem unconventional to some readers. The close relationship of the two
types of models can, however, be pointed out in terms of an illustration.
A simple theoretical model that has become very familiar in cognitive
psychology is the function relating reaction time to set size in short-term
memory search. In a paradigm made famous by Sternberg (1966), an
experimental subject is presented with a small set of items, typically
randomly selected digits, letters, or short words, then is presented with a
test item and responds yes or no as quickly as possible, yes indicating that
the test item was in the set of items presented (the memory set) and no
indicating that it was not. On the assumption that the memory set is
represented in the subject’s short-term memory system in a list-like
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format and that the task of responding to the test item is achieved by
comparing it successively to each of the items in the memory represen-
tation, reaction time for the yes or no response can be predicted from the
function

Y=a+bi (1.1)

where Y denotes mean reaction time to respond to the test item, a is the
time required to generate a response, b is the time required for a single
comparison of the test item with an item in memory, and i is the number
of items in the set.

This scientific hypothesis seems straightforward, but how are we to
decide whether or not it is supported by data? The upper panel in FIG.
1.1 presents the problem more concretely. The open squares in the figure
represent data from a hypothetical memory search experiment in the
form of mean reaction time at each set size, and the straight line
represents the theoretical hypothesis with a particular choice of values of
the constants a and b. It appears to the eye that the data and the
hypothesis are in fair agreement, but for many scientific purposes one
wishes to be able to say something more specific and preferably
quantitative about the goodness of fit. In the course of research in this
paradigm, investigators have, for example, wanted to make comparisons
of the goodness of fit in different studies that have used different kinds
of items, different conditions of item presentation, or the like, or they
have wanted to compare the goodness of fit of this hypothesis with others
that differ from it in some particular way. To serve these purposes, it is
necessary to replace our initial general and somewhat vague statement of
the problem of goodness of fit with more structured and specific
questions to which definite answers can be obtained.

To start this process, we note that the data points in FIG. 1.1 do not
fall on the plotted straight line exactly but vary somewhat irregularly
around it. This result is to be expected if there is experimental error in
the situation so that different experimental subjects differ somewhat
from each other in performance and so that the reaction times obtained
from a particular subject on a particular set size may vary somewhat
from one occasion to another. Thus, we need to face the question
whether we can confidently rule out the possibility that the upward trend
of the data points in FIG. 1.1 is simply a chance result of the error in the
situation. Two steps that we take in order to deal with this question are
illustrated in the middle panel of FIG. 1.1. The first step is to augment
the equation for the theoretical hypothesis by a term, e, representing
experimental error. We have, in a manner of speaking, imbedded the
theoretical model in a statistical model, in particular a linear regression



FIG. 1.1 Steps in statis-
tically evaluating a sci-
entific hypothesis. The
upper panel presents a
set of observed data in
the form of mean reac-
tion times versus size
of a set of items to be
remembered (in an ex-
perimental paradigm de-
scribed in the text)
together with a theoret-
ical hypothesis that
takes the form of a
linear function relating
reaction time to set
size.

For a first test of the
hypothesis, it is com-
pared with the simpler
hypothesis that reac-
tion time is constant
over set size, repre-
sented by the horizontal
line in the middle panel.
If the result of the
first test demonstrates
a significant positive
slope for the observed
trend, thus rejecting the
simpler model, we ask
next whether the trend
is specifically linear. To
answer that question,
we compare the model
representing the linear
trend with the aug-
mented model illus-
trated in the bottom
panel, in which a quan-
tity t is added to or
subtracted from the
linear function at each
set size.
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model. The equation for the latter expresses the idea that the observed
data should represent a combination of the true theoretical function
relating reaction time to set size with an error term that may result in
observed points falling randomly above or below the true function at
each set size.

The second step is to formulate an alternative hypothesis, represented
by the horizontal line and accompanying regression equation in the
middle panel of FIG. 1.1, expressing the possibility that there is no true
relation between reaction time and set size and that the observed trend
might be simply a combination of a horizontal straight line plus random
error. As will be described in detail in Chapter 7, a computer program
for regression analysis, given the full set of data values as input, will
form an estimate of the magnitude of experimental error, select values
of constants a and b that are the best possible in the sense that they
reduce the variability of the data points around the theoretical function
to a minimum, and will enable us to make a quantitative statement
about the confidence with which we can conclude that the upward
sloping function provides a better account of the data than the
horizontal function.

If the results of this analysis enable us to conclude that the upward
trend in the data points is real (i.e., not due to chance) so that the
scientific hypothesis is preferable to the alternative one, we may wish to
proceed to the specific question whether the particular assumption of a
linear relation between reaction time and set size, assumed in the
theoretical hypothesis, provides a better description of the data than
some alternative function that would have an upward trend of a
different form, such as the curvilinear function shown in the bottom
panel of FIG. 1.1. At various times in the history of research in this
paradigm, investigators have in fact surmised that the true relation is
better assumed to be a logarithmic or power function than a straight
line.

In order to be able to make a decision about these alternative
functions as a class, we define the statistical model represented by the
lowermost equation in FIG. 1.1, which will be seen to be the linear
regression function plus an additional term t. The values of t, which in
general would be different from one set size to another, represent the
differences between the values predicted by the augmented hypothesis
and the values predicted by the linear hypothesis. Working in the
regression framework, we do not attempt to guess what the values of t
should be but rather let the statistical computer program determine the
values that are best in the sense of yielding the smallest error estimate,
that is, the smallest variation of the observed data points around the
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function. The final step is to compare this error estimate for the linear
and the augmented hypothesis and produce a quantitative statement as
to whether the augmented model yields a significantly better account of
the data than the linear model.'

The specific statistical concepts and tools needed to understand how
the regression program accomplishes these purposes will be developed in
the next few chapters. At this point, I wish only to emphasize the overall
strategy of imbedding the idealized relationship derived from a scientific
hypothesis (as the one expressed in Equation 1.1) in a model general
enough to allow for the possibility that either this hypothesis or some
alternative hypothesis is true. One can then determine in a systematic way
whether the hypothesized relation or the alternative is better justified by
the data. This strategy of comparing a more general model with a simpler
one that is in a sense included within it underlies all of the types of
statistical hypothesis testing that will be covered in this volume.

ORGANIZATION OF THE VOLUME

The following four chapters develop the tools needed to understand a
variety of ANOVA and regression designs and the models underlying
them. These chapters review the elements of probability and decision
theory, sampling distributions, contrast analysis, and hypothesis testing.
The tools are then applied to a sample of research problems chosen to
illustrate the various aspects of design and analysis represented in the
following outline, all of the treatments being integrated within a common
theoretical framework known in the statistical literature as the general
linear model.

Balanced Designs
Fixed effects
One-way ANOVA
Simple regression
Multiple classifications
ANOVAs
Mixed ANOVA and regression
Random effects
One-way ANOVA
Intra-class correlation

'As will be seen in Chapter 7, this technique is not limited to the case where a scientific
hypothesis prescribes a linear function but can be generalized to any specified function.
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Mixed models, including repeated measures
Two-way ANOVAs
Two-way ANOVA/Regression
Higher order and nested designs
Multiple regression and analysis of covariance
Unbalanced Designs

For most purposes, we can take “balanced design” to denote one in
which all cells contain equal numbers of scores, although there are a few
infrequently occurring exceptional cases that qualify (see Howell, 1987,
p. 392). Imbalance raises no special problems for one-way designs, but
for two-way and higher-order classifications, the distinction between
balanced and unbalanced designs is critical. The familiar algebraic
breakdown of a total sum of squares into components associated with
main effects, interactions, and error; the property of ANOVA tables that
the component sums of squares add up to the total sum of squares; the
obvious correspondence of F tests to simply stateable hypotheses about
population parameters —all hold only for balanced designs. Therefore, I
defer the problem of dealing with unbalanced designs for special
treatment at the end of the tour.

My treatment of methods and designs stops short of multivariate
analysis of variance (MANOVA). One reason is that in order to
concentrate on mathematical reasoning rather than derivations, I limit
the mathematics used in the book to simple algebra, eschewing even
matrix operations. A second reason is that there are many presentations
of MANOVA available (e.g., Dunteman, 1984; Finn, 1974; Harris, 1985)
that are fully adequate for courses on multivariate methods and for the
needs of investigators who work with predominantly correlational data.
With this limitation, it has been possible to give a compact but
reasonably complete presentation of the basic statistical models needed
by investigators whose research is primarily experimental in character
and is often oriented toward the testing of quantitative theories.



Statistics, Probability, and
Decision

GENERAL CONSIDERATIONS

I think it would be hard to find an informed person contesting the
proposition that probability theory is basic to statistics. But why do
people believe this proposition to be true? An answer suggested by many
textbook presentations and by the unending controversies between
adherents of different approaches to probability and statistics (Bayesian,
Fisherian, etc.) is that the probabilities computed in the course of
statistical applications can be regarded as properties of events that occur
in the research situations. When the applications are to gambling
situations involving, for example, fair coins, dice, or roulette wheels, it
is known that probabilities derived from statistical theory do closely
describe actual long-term experience and can be ignored by the gambler
only at the cost of certain ruin. When the applications are to scientific
research situations, however, whether in physical science, agriculture, or
social science, 1 know of no evidence to suggest that the same is true.
Why, then, do scientists in all fields depend heavily on statistical
methods based on probability theory? I suggest that the answer is much
the same as for other uses of formal models in science. A statistical
model for an experiment is a deliberate idealization of the actual
empirical situation, and probabilities derived by means of the model hold
strictly only for the idealized, not for the actual, situation. In a few
instances, such as gambling and perhaps some applications in physical
science, the idealized situation of the model may be so close to the

9
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empirical one that probabilities derived are literally interpretable as
properties of events. In biology, psychology, and social science, how-
ever, such correspondences are rare, and there must be other reasons for
using statistics and taking derived probabilities to be empirically signif-
icant. The only defensible answer, I would say, is that just as with any
methods in science, the use of statistical methods is justified by long-term
experience. Thus, although there is no reason to think that the proba-
bility value derived from application of a statistical test to a psycholog-
ical experiment tells us how often an observed result would occur in
actual research if a hypothesized effect were absent, a large body of
experience assures us that, other things equal, a result significant at the
.01 level will more often prove replicable than a result significant at the
.05 level. In general, relative values of derived probabilities are often
highly informative, although absolute values may not be.

The reader should not, however, leap to the conclusion that I am one
of those who depreciate the use of conventional significance levels. Quite
to the contrary, I think the use of conventional significance levels is
useful and entirely defensible, not because the absolute probability
values are empirically meaningful, but because the use of conventional
significance levels can be conducive to clear thinking. To see why this is
so, we need to review a few basic concepts of probability and decision.

OUTCOME TREES AND DECISION CRITERIA

When considering application of statistics to a research situation, the
investigator needs routinely to attend to two preliminaries. The first is to
consider whether there is reason to believe that the research design
includes an element of randomization that would make application of a
probability model appropriate. The second, if the answer to the first is
affirmative, is to lay out an outcome tree for the experiment and to
specify decision criteria.

We say that a set of events is random if the long-term relative
frequencies of occurrence of the events over replications of the situation
settle down to stable values, and if manipulation of these values
according to the laws of probability yields empirically confirmable
predictions. We know from experience that these criteria are satisfied by
tosses of coins or dice and by the outputs of well-constructed computer
programs for the generation of random numbers. Thus, we can and do
use these devices to lift ourselves by our boot straps, so to speak, in
research situations and introduce the randomness required for appro-
priate application of statistical models by making random assignments of



