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Preface

The increasing demand for high-speed transport of data has revitalized optical commu-
nications, leading to extensive work on high-speed device and circuit design. This book
has been written to address the need for a tutorial text dealing with the analysis and de-
sign of integrated circuits (ICs) for optical communication systems and will prove useful
to both graduate students and practicing engineers. The book assumes a solid understand-
ing of analog design, e.g., at the level of Design of Analog CMOS Integrated Circuits by
B. Razavi or Analysis and Design of Analog Integrated Circuits by P. Gray, P. Hurst, S.
Lewis, and R. Meyer.

The book comprises ten chapters. Chapter 1 provides an introduction to optical com-
munications, setting the stage for subsequent developments. Chapter 2 describes basic
concepts, building the foundation for analysis and design of circuits. Chapter 3 deals with
optical devices and systems, bridging the gap between optics and electronics.

Chapter 4 addresses the design of transimpedance amplifiers, focusing on low-noise
broadband topologies and their trade-offs. Chapter 5 extends these concepts to limiting
amplifiers and output buffers, introducing methods of achieving a high gain with a broad
bandwidth.

Chapter 6 presents oscillator fundamentals, and Chapter 7 focuses on L.C oscillators.
Chapter 8 describes the design of phase-locked loops, and Chapter 9 applies the idea of
phase locking to clock and data recovery circuits. Chapter 10 deals with high-speed trans-
mitter circuits such as multiplexers and laser drivers.

The book can be adopted for a graduate course on high-speed IC design. In a quarter
system, parts of Chapters 3, 4, and 10 may be skipped. In a semester system, all chapters
can be covered.

A website for the book provides additional resources for the reader, including an image
set and web links. Visit www.mhhe.com/razavi for more information.

I would like to express my gratitude to the reviewers who provided invaluable feed-
back on all aspects of the book. Specifically, I am thankful to Lawrence Der (Transpec-
trum), Larry DeVito (Analog Devices), Val Garuts (TDK Semiconductor), Michael Green
(University of California, Irvine), Yuriy Greshishchev (Nortel Networks), Qiuting Huang
(Swiss Federal Institute of Technology), Jaime Kardontchik (TDK Semiconductor), Tai-
Cheng Lee (National Taiwan University), Howard Luong (Hong Kong University of Sci-




Preface

ence and Technology), Bradley Minch (Cornell University), Hakki Ozuc (TDK Semicon-
ductor), Ken Pedrotti (University of California, Santa Cruz), Gabor Temes (Oregon State
University), and Barry Thompson (TDK Semoconductor). I also wish to thank Michelle
Flomenhoft, Betsy Jones, and Gloria Schiesl of McGraw-Hill for their kind support.

My wife, Angelina, encouraged me to start writing this book soon after we were mar-
ried. She typed the entire text and endured my late work hours—always with a smile. I am
very grateful to her.

Behzad Razavi
July 2002
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CHAPTER 1

Introduction to Optical
Communications

The rapidly-growing volumes of data in telecommunication networks have rekindled inter-
est in high-speed optical and electronic devices and systems. With the proliferation of the
Internet and the rise in the speed of microprocessors and memories, the transport of data
continues to be the bottleneck, motivating work on faster communication channels.

The idea of using light as a carrier for signals has been around for more than a century,
but it was not until the mid-1950s that researchers demonstrated the utility of the opti-
cal fiber as a medium for light propagation [1]. Even though early fibers suffered from a
high loss, the prospect of guided transmission of light with a very wide modulation band
ignited extensive research in the area of optical communications, leading to the practical
realization of optical networks in the 1970s.

This chapter provides an overview of optical communications, helping the reader un-
derstand how the concepts introduced in subsequent chapters fit into the “big picture.” We
begin with a brief history and study a generic optical system, describing its principal func-
tions. Next, we present the challenges in the design of modern optical transceivers. Finally,
we review the state of the art and the trends in transceiver design.

1.1 Brief History

Attempts to “guide” light go back to the 1840s, when a French physicist named Jacque
Babinet demonstrated that light could be “bent” along a jet of water. By the late 1800s,
researchers had discovered that light could travel inside bent rods made of quartz. The
“fiber”” was thus born as a flexible, transparent rod of glass or plastic.

In 1954, Abraham van Heel of the Technical University of Delft (Holland) and Harold
Hopkins and Narinder Kapany of the Imperial College (Britain) independently published
the idea of using a bundle of fibers to transmit images. Around the same time, Brian
O’Brien of the American Optical Company recognized that “bare” fibers lost energy to
the surrounding air, motivating van Heel to enclose the fiber core in a coating and hence
lower the loss. Fiber loss was still very high, about 1,000 dB/km, limiting the usage to
endoscopy applications.



Chap. 1 Introduction to Optical Communications

The introduction of the laser as an intense light source in the 1950s and 1960s played
a crucial role in fiber optics. The broadband modulation capability of lasers offered great
potential for carrying information, although no suitable propagation medium seemed avail-
able. In 1966, Charles Ko and Charles Hockem of the Standard Telecommunication Lab-
oratory (Britain) proposed that the optical fiber could be utilized as a signal transmission
medium if the loss was lowered to 20 dB/km. They also postulated that such a low loss
would be obtained if the impurities in the fiber material were reduced substantially.

Four years later, Robert Mauer and two of his colleagues at Corning Glass Works
demonstrated silica fibers having a loss of less than 20 dB/km. With advances in semi-
conductor industry, the art of reducing impurities and dislocations in fibers improved as
well, leading to a loss of 4 dB/km in 1975 and 0.2 dB/km in 1979. The dream of carrying
massive volumes of information over long distances was thus fulfilled: in 1977, AT&T and
GTE deployed the first fiber optic telephone system.

The widespread usage of optical communication for the transport of high-speed data
stems from (1) the large bandwidth of fibers (roughly 25 to 50 GHz) and (2) the low loss
of fibers (0.15 to 0.2 dB/km). By comparison, the loss reaches 200 dB/km at 100 MHz for
twisted-pair cables and 500 dB/km at 1 GHz for low-cost coaxial cables. Also, wireless
propagation with carrier frequencies of several gigahertz incurs an attenuation of tens of
decibels across a few meters while supporting data rates lower than 100 Mb/s.

The large (and free) bandwidth provided by fibers has led to another important develop-
ment: the use of multiple wavelengths (frequencies) to carry several channels on a single
fiber. For example, it has been demonstrated that 100 wavelengths, each carrying data at
10 Gb/s, allow communication at an overall rate of 1 Tb/s across 400 km.

1.2 Generic Optical System

The goal of an optical communication (OC) system is to carry large volumes of data across
a long distance. For example, the telephone traffic in Europe is connected to that in the
United States through a fiber system installed across the Atlantic Ocean.

Depicted in Fig. 1.1(a), a simple OC system consists of three components: (1) an electro-
optical transducer (e.g., a laser diode), which converts the electrical data to optical form
(i.e., it produces light for logical ONEs and remains off for logical ZEROs); (2) a fiber,
which carries the light produced by the laser; and (3) a photodetector (e.g., a photodiode),
which senses the light at the end of the fiber and converts it to an electrical signal. We call
the transmit and receive sides the *“near end” and the “far end,” respectively. As explained
in Chapter 3, lasers are driven by electrical currents, and photodiodes generate an output
current.

With long or low-cost fibers, the light experiences considerable attenuation as it travels
from the near end to the far end. Thus, (1) the laser must produce a high light intensity,
e.g., tens of milliwatts; (2) the photodiode must exhibit a high sensitivity to light; and (3)
the electrical signal generated by the photodiode must be amplified with low noise. These
observations lead to the more complete system shown in Fig. 1.1(b), where a “laser driver”
delivers large currents to the laser and a “transimpedance amplifier” (TIA) amplifies the
photodiode output with low noise and sufficient bandwidth, converting it to a voltage. For



Sec. 1.2 Generic Optical System

Laser Photodiode
] { Fiber !
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Figure 1.1 (a) Simple optical system, (b) addition of driver and amplifier, (c) addition of MUX and
DMUX.

example, data at a rate of 10 Gb/s may be applied to the laser driver, modulate the laser
light at a wavelength of 1.55 um, and emerge at the output of the TIA with an amplitude
of 10 mV.

The transmit and receive operations in Fig. 1.1(b) process high-speed “serial” data, e.g.,
a single stream of data at 10 Gb/s. However, the actual data provided to the transmitter
(TX) is in the form of many low-speed channels (“parallel” data) because it is generated
by multiple users. The task of parallel-to-serial conversion is performed by a “multiplexer”
(MUX). Similarly, the receiver (RX) must incorporate a “demultiplexer” (DMUX) to re-
produce the original parallel channels. The resulting system is shown in Fig. 1.1(c).

The topology of Fig. 1.1(c) is still incomplete. Let us first consider the transmit end. The
multiplexer requires a number of clock frequencies with precise edge alignment. These
clocks are generated by a phase-locked loop (PLL). Furthermore, in practice, the MUX
output suffers from nonidealities such as “jitter” and “intersymbol interference’ (ISI), man-
dating the use of a “clean-up” flipflop before the laser driver. These modifications lead to
the transmitter illustrated in Fig. 1.2(a).

The receive end also requires additional functions. Since the TIA output swing may
not be large enough to provide logical levels, a high-gain amplifier (called a ‘“limiting
amplifier”’) must follow the TIA. Moreover, since the received data may exhibit substantial
noise, a clean-up flipflop (called a “decision circuit”) is interposed between the limiting
amplifier and the DMUX. The receiver thus appears as shown in Fig. 1.2(b).

The receiver of Fig. 1.2(b) lacks a means of generating the clock necessary for the de-
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