CCCCCCCC

Charles Seiter/Robert Weiss

PASCAL

Pascal for
BASIC Programmers

CHARLES SEITEF# 0 ROBERT WEISS

W Addison-Wesley Publishing Company
READING, MASSACHUSETTS ¢ MENLO PARK, CALIFORNIA
LONDON ¢ AMSTERDAM ¢ DON MILLS, ONTARIO ¢ SYDNEY

This book is in the
Addison-Wesley Microbooks
Popular Series

THOMAS A. BELL, Sponsoring Editor
MARSHALL HENRICHS, Design

Library of Congress Cataloging in Publication Data

Seiter, Charles.
Pascal for BASIC programmers.

Bibliography: p.

Includes index.

1. PASCAL (Computer program language) 1. Weiss,
Robert, 1949- . 1L Title.
QA76.73.P2544 1983 001.64'24 82-13750
ISBN 0-201-06577-0 (pbk.)

Copyright © 1983 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

ISBN 0-201-06577-0
ABCDEFGHIJ-HA-898765432

Preface

BASIC and Pascal are both computer languages that have been adapt-
ed elegantly to microcomputers. Although they are similar in many
details, the flavor of programming in them is quite different. Each has
its strengths and its weaknesses.

This book is oriented toward a reader who has a home or small
business computer, is familiar with BASIC, and wants to investigate
the power and convenience of Pascal. It should also be useful to a
BASIC programmer encountering Pascal on a larger computer.

Organization of this book

The book contains five major parts. First, there's a chapter designed
to provide about one evening’s entertainment at a terminal that will
enable a programmer to be doing something in Pascal right away.
This is analogous to learning a few traveller's phrases in a language
before beginning a really serious study. Second, there is a simple dis-
cussion of the process of translating higher level languages into ma-
chine code, and the way this process influences the varieties of
Pascal. Third, there is a traditional part in which the features of Pas-
cal are explored systematically. The emphasis in this section is
placed on the practical aspects of programming. Fourth, there is a de-
scription of the process of planning and writing a Pascal program,
along with an examination of two medium-sized programs. Finally,
there is a BASIC to Pascal phrasebook.

Pascal for BASIC Programmers

Most of the examples in the book use a simplified form of BA-
SIC; many microcomputer BASIC implementations have more conve-
nient features, but they differ from one implementation to the next.
Unless otherwise stated, the Pascal examples set off in frames will
work properly in “UCSD Pascal”, the most popular form for
microcomputers. When Pascal program examples prompt for user in-
put, they generally signal this with the “>", or right angle bracket,
character.

Other Pascal books

The developer of the Pascal language, Professor Niklaus Wirth, has
written a book called Algorithms + Data Structures = Programs,
(Prentice-Hall) itself an interesting source of Pascal programs. In Pro-
fessor Wirth’s view, the real task in programming is to formulate a
problem in two parts: first, to arrange the data in a convenient and
natural form, and second, to devise the scheme or ‘“algorithm” for
transforming the data to the desired solution-form. The reader will
note very shortly that the format of a Pascal program emphasizes the
distinction between these two programming tasks.

Three other references may be useful to the reader. The Pascal
User Manual and Report by K. Jensen and N. Wirth (Springer-Verlag)
is necessary for the designer’s perspective on the language and its for-
mal definition. Most versions of Pascal define themselves in terms of
this “standard” Pascal. Programming in Pascal by Peter Grogono (Ad-
dison-Wesley) is an exceptionally clear work and is also recom-
mended. It may assume, however, more background in mathematics
than some readers have. Software Tools in Pascal by B. Kernighan
and P. Plauger (Addison-Wesley) contains many useful programs,
along with detailed descriptions of their planning.

Acknowledgements
Registered trademarks mentioned in this book are: UCSD PASCAL®,

Regents of the University of California; CP/M® and Pascal/MT+®,
Digital Research, Inc., and Pascal Z®, Ithaca Intersystems, Inc.

Preface

We would like to thank Michael R. Murphy, Bill Wensil and Jo-
seph Fukumoto for commenting on the manuscript; and Marilyn Dar-
ling of Digital Research and Laurie Moskow of Ithaca Intersystems for
providing information on their companies’ products.

Contents

1 A Mini-Book: Pascal in One Evening

Tiny BASIC, Tiny Pascal and Tiny Programs 1
An Assignment Program 1

Simple Decision Statements 5

Loops 8

Programming with Subroutines 15

Beyond Comparison 17

2 Orientation: Pascal for Microcomputers

People Serving Machines or Machines Serving People? 20
The Evolution of Programming Languages 21
Assembly Language 22

Higher Level Languages 23

The Birth of an Old Friend 23

The Ancestry of a New Acquaintance 24
Imitation is the Sincerest Form of Flattery 25
Two Ways of Running Programs 25
Interpreters 25

Compilers 26

An Intermediate Approach 27

Syntax 28

Syntax Diagrams 28

Interpreters and Compilers 33

Pascal Systems 36

The Future of Pascal Systems 38

19

Pascal for BASIC Programmers

3 Variables and Expressions

Numbers in BASIC 42

Why Declare Variables 44

An Aside on Variable Names 45
Variable Types 46

Transfer Functions 48

Interactions of Variables: Expressions 52
Type Compatibility 53

Operator Precedence 54

A Possible Source of Confusion 56
Structured Variable Types 60

4 Variables Not Available in BASIC

The Record Type 65

How Did I Get Along Without This? 69
The ‘with’ Statement 70

Using Records 71

The Set Type 72

Operations on Sets 76

The Use of Sets 79

Packed Variables 81

Constants 83

The ‘Pointer’ Type 84

How Are Pointers Used? 86

Where Did Those Letters Come From? 88
What Makes the Strng Stringy? 88

5 Control of Program Execution

The ‘Statement’ in Pascal 92

A Program Format that Displays the Program’s Logic
The Assignment Statement 93

The goto Statement 94

The if..then Statement 96

The Compound Statement 98

The if..then..else Statement 100
Where Do the Semicolons Go? 101
Nested if..then..else 102

The case..end Statement 104

The for..do Statement 107

92

39

91

Contents

The while..do Statement 108

The repeat..until Statement 109

How Do You Choose a Looping Construct? 110
Pascal Stumbles 111

The with..do Statement 115

The Subroutine Call 116

6 Input and Output 119
Formatted Output 120
Different Types Are Automatically Treated Differemtlys- 122
Output to Disk Files 123
Formatted Input 124
Formatted Files Are Divided into Lines 128
Unformatted Input/Qutput 132
The Relation Between Formatted and Unformatted I/O 136
Beware 139
A Note of Consolation 143

7 Procedures 145
The Use of Names 146
A Subroutine in BASIC 148
Pascal Can Imitate BASIC 149
Declaring Procedures 150
Calling a Procedure 151
A Procedure Can Have Its Own Variables 152
Who Knows What Names? 153
Passing Arguments to Procedures 155
Changing Values in the Calling Procedure 159
Passing Structured Types as Arguments 160
Who Checks That Arguments Have Reasonable Values? 163
Functions 164
Recursion 166
Separate Compilation 171

8 Systematic Programming 173
Program Development 173
Top-Down Design in Stepwise Refinement 174
So Where Is the Program? 175
Top-Down Design, Top-Down Programming—the Minimum
Profitable Run 177

Pascal for BASIC Programmers

Stepwise Refinement 177

Top-Down Programming 178

So You Think You're Finished? 182
Bottom-Up Programming: Energy 184
The Remaining Problem 190

Reality Intrudes 190

9 Two Pascal Programs 191

A Program That Checks for Certain Errors in Pascal
Programs 191

How Do You Read a Pascal Program? 194

Can I Get One for My Own? 199

Another Program: ‘Calc’ 206

Let's Look at the Program 209

Procedure Nesting and the Scope Rules 211

How Does Calc Work? 213

‘Forward’ Declarations 215

Each Procedure Should Do One Job 216

Appendix A: A BASIC-to-Pascal Lexicon 223
Appendix B: Pascal Syntax Diagrams 231
Index 241

CHAPTER

A Mini-Book: Pascal

in One Evening

Tiny Basic, Tiny Pascal and Tiny Programs

Since Pascal has many features that are not found in BASIC, we first
restrict ourselves to comparing the “tiny” versions of the two lan-
guages, where there are more similarities. This chapter will focus on
the way the simplest programs are organized and particularly on the
different approaches in the two languages to control statements. For
the tiny programs displayed in this chapter, Pascal may seem more
cumbersome than BASIC; the real virtues of Pascal will become ap-
parent later.

An Assignment Program

In order not to burden ourselves with too difficult a first step we
write a program to add two plus two and print the result:

10 LET A = 2 + 2
20 PRINT A
30 END

Pascal for BASIC Programmers

A very
simple
program

In Pascal, an analogous program would look this way:

program Firstcrade;
var A : integer;

begin
A =2 + 2;
writeln(A)
end.

Some of the distinctive features of Pascal are already apparent. First,
the program has no line numbers. Pascal makes every effort to keep
the flow of the program readable; to this end it has enough fancy gim-
micks that the GOTO statement and its associated line numbers are
usually not necessary. Second, this program is like all Pascal pro-
grams in being divided into two parts: the first describes the variables
that are to be used, and the second contains program statements that
will be e:zecuted:

declaration program FirstGrade;
of variables var A : integer;
begin
executable A =2+ 2;
spehion writeln(A)
end.

The two parts will rarely be as simple as these, but the structure will
always be the same.

Pascal variables must be announced at the beginning of a pro-
gram and identified by type; here the type for variable A is in-
teger. The variety of data types recognized by Pascal will later ap-
pear as a feature of great power and convenience, but for simplicity
we will work mainly with integers in this chapter.

A Mini-Book: Pascal in One Evening

Statements in BASIC are distinguished from each other by ap-
pearing on different lines. In Pascal, statements are separated by
semicolons. The programmer is free to place statements on lines and
indent the lines so as best to express what the program is doing; Pas-
cal only looks for the semicolons. This program contains two state-
ments. A := 2 + 2 is only slightly different from BASIC’'s usage;
writeln(A) tells you the value of A, similar to PRINT A.

Although we didn’t use it in this case, another nice feature of
Pascal allows considerable freedom in making up the names of vari-
ables. A name must start with a letter and can contain letters and
digits. Pascal has a few special words; these are not available as
names:

and end nil set
array file not then
begin for of to
case function or type
const goto packed until
div if procedure var
do in program while
downto label record with
else mod repeat

The program above could use Aardvark for the variable name, if we
wished. While Aardvark is perhaps not especially evocative, it will
be apparent that this flexibility in naming can make programs more
readable and easier to document.

We will use some variable names in the Pascal version of this
slightly longer program:

10 LET J
20 LET B
30 LET A =12 * B + J

40 PRINT "THEY BOTH HAD", A, "APPLES"
50 END

output:

THEY BOTH HAD 29 APPLES

Pascal for BASIC Programmers

Using
variable
names

An analogous program in Pascal might be clearer:

7

program ApplesToPlus;
var JohnsApples, BillsDozens, BothApples : integer;

begin
JohnsApples := 5;
BillsDozens := 2;
BothApples := 12 * BillsDozens + JohnsApples;
writeln('They both had ', BothApples,' apples.')
end.

output:

They both had 29 apples.

The choice of variable names helps show that this program answers
the elementary question, “If John had five apples, and Bill had two
dozen apples, how many apples did they both have?” Now we have
four statements in the executable section; we require three semicolons
to separate them.

We have introduced a little bit of calculation with the ordinary
arithmetic operators. The reader has every reason to hope that the +,
—, * and / operations are the same in Pascal and BASIC, and in fact
they usually are. This extends to similarity in the rules for order of
calculation in complex statements; i.e., 5%4 —6 means (5%4)—6 and
not 5*(4—-6).

Another analogy between the two tiny languages is in their input
of numbers from the keyboard. The BASIC statement INPUT corre-
sponds to the Pascal statement read, as in these two programs:

10 INPUT A

20 REM A=APES, B=BANANAS

30 REM WE'RE FIGURING A DOZEN BANANAS PER APE
40 LET B=12*A

50 PRINT "BANANA ORDER =",B

60 END

A Mini-Book: Pascal in One Evening

4 Reading
numbers
program ApeLunch;
var Apes, Bananas : integer;
begin
read(Apes) ;
Bananas := 12 * Apes {WE'RE FIGURING A DOZEN PER APE} ;
writeln('Banana order = ',6Bananas)

end.

Pascal’'s read, however, does not print a prompt like BASIC’s ?. Pas-
cal will sit patiently and quietly until you type a number. Since this
example was so straightforward, it seemed like an appropriate place
to put in a note about documentation or comment statements. The
REM statement in BASIC allows the programmer to leave notes
throughout the program; the program ignores them. In Pascal this is
accomplished by enclosing the notes in curly brackets {} to form a
“comment”. (In most versions of Pascal, the pairs (* and *) may be
used as well as { and }.) Comments may be inserted anywhere in the
program (except in the middle of names) and similarly do not affect
the program’s operation. All books on programming contain some au-
thors’ prejudices about the way things should be done; here are two
rules:

1. Comment on every program feature that is not completely obvi-
ous at first glance.

2. Since what is obvious now won't be obvious next year, also com-
ment on every program feature that is obvious at first glance.

In most versions of BASIC the presence of comments slows down the
program. This is not true in Pascal, where the computer discards your
comments while preparing its own version of your program (‘“‘compil-
ing” the program).

Simple Decision Statements
R e,

The BASIC statement IF . . THEN has a close counterpart in the
Pascal construct if . . then . . else. These are the simplest deci-

Pascal for BASIC Programmers

sion elements in the two languages, and can be compared in a few

examples.

As an elementary program, we will consider using the computer
as a suspicious electronic bartender. The BASIC program for this uses

an IF . . THEN:

10
20
30
40
50
100
110

Pascal provides a

PRINT "HOW OLD ARE YoOU"
INPUT A

IF A < 21 THEN 100

PRINT "WHAT WILL YOU HAVE?"
GOTO 110

PRINT "GET LOST, JUNIOR!"
END

“high-level construct” to replace the common but

clumsy BASIC sequence.

The
if .. then
statement

e

var Age :

begin

end

end

end.

else begin
writeln('Get lost,

program Bartender;
integer;

writeln('How old are you?');

read(Age);

if Age > 20 then begin
writeln('What will you have?')

junior!"')

For the present, we will distinguish the parts of the program exe-
cuted depending on the if . . then . . else by enclosing them be-
tween begin and end. This is not always necessary, as described in
Chapter 5. As a note about punctuation, the example illustrates that

A Mini-Book: Pascal in One Evening

such Pascal words as begin and end, since they are not statements,
do not have to be separated from statements by the semicolon. It also
demonstrates one of the features of Pascal that makes it so easy to
read, namely that the choices of action to be resolved by an if .
then . . else appear on an equal footing following then and
else. Long BASIC programs suffer from the problem that IF . .
THEN branches to statement numbers are hard to follow and can be-
come a source of confusion. The Pascal construct can be extended re-
peatedly with no problems of readability, as is demonstrated by the
sinister program CorruptBar:

Nested
(if .. then
statements
program CorruptBar;

var Age, Bribe : integer;

begin

writeln('How old are you?');

read (Age);

if Age > 20 then begin
writeln('What will you have?')

end

else begin
writeln('How bad do you need a drink?');
read(Bribe) ;
if Bribe > 10 then begin

writeln('What will you have, sir?')
end
else begin
writeln('Get lost!')

end;

end;

end.

Enclosing a series of statements between begin and end indi-
cates that they will be performed one after another; in BASIC it
would be possible to branch into the middle of such a sequence and

