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PREFACE

There have appeared, over the last twenty years, a number of
text-books on electron optics, but the great advances which are
still going on make it increasingly difficult to include in one volume
an adequate account of the theory, design and operation of even
the few principal electron-optical instruments. Although there are
monographs in English which are confined to design problems or
to the use of some specific instrument, the only theoretical mono-
graphs so far published have all been written in German.

In writing this book on the theory of electron optics, I have had
in mind the needs not only of those already engaged in research and
development who wish to calculate the properties of some new
instrument or machine, but also of scientists who are not yet familiar
with the subject and therefore look to a theoretical exposition for
an account of the ideas common to all applications. Part I, on
‘static electron optics’, deals with the focusing of charged particles
in static electromagnetic fields. Part II, on ‘dynamic electron
optics’, is devoted to the focusing of charged particles in time-
dependent electromagnetic fields as realized in particle accelerators.
The tendency has been, for reasons which I attempt to make clear
to emphasize the optical—rather than the dynamical—aspect of
these problems.

Part I began to take shape during the years 1948-51, during
which I was carrying out study and research on electron optics at
Cambridge, at the National Bureau of Standards, Washington, and
at the Laboratoire de Radioélectricité, Paris. My interest in particle
accelerators stems from my experience as a research fellow at the
Atomic Energy Research Establishment, Harwell, over the years
1951-53.

My aim in writing this book has been three-fold: First, to relate
the theory of electron-optical instruments and particle accelerators
to classical optics and dynamics by demonstrating the significance
and usefulness in these new studies of concepts drawn from the
older disciplines, particularly the Lagrange and Poincaré invariants
and Hamilton’s characteristic functions. Second, to set out general
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procedures which may be applied to the study of image-formation
in electron-optical instruments and stability in particle accelerators;
these are based exclusively on the relevant variational principles
and make extensive use of modifications of Hamilton’s functions
which I call ‘perturbation characteristic functions’. Third, to
apply these procedures to the analysis of the properties of the more
important instruments and machines: electron lenses, f-ray and
mass spectrographs, cathode-ray-tube deflectors, and certain
accelerators including the strong-focusing synchrotron.

The reader need not assume that each chapter is entirely de-
pendent upon preceding chapters. Those without previous know-
ledge of electron optics may omit Chapter 2 on their first reading,
since formulae which are used in Chapters 4 and 5 are derived in
Chapter 3. None of Chapter 4 is necessary for the understanding
of Chapter 5. If the reader’s primary interest is in the dynamics of
particle accelerators, he may pass to Part II after reading only the
following sections of Part I: 1.1, 1.2, 1.3; 2.1, 2.2, 2.3; 3.1, 3.2, 3.3
and 3.5 as far as equation (3.5.10).

It is a pleasure to thank the many people who have stimulated
my interest in electron optics and in particle accglerators, particu-
larly Dr V. E. Cosslett of the Cavendish Laboratory, Cambridge;
Dr W. Ehrenberg of Birkbeck College, London; Professor P.
Grivet of the Laboratoire de Radioélectricité, Paris; Mr M. E.
Haine and Dr G. Liebmann of the A.E.I. Research Laboratory,
Aldermaston; Dr L. Marton of the National Bureau of Standards,
Washington; and Mr W. Walkinshaw of the Atomic Energy
Research Establishment, Harwell. I owe especial thanks to Mr J. S.
Bell, also of A.E.R.E., for his detailed criticism of the first draft of
Chapters 6 and 7; to Mr A. R. Curtis, now at Sheffield University,
for criticism of an early draft of the first three chapters; and to
Dr D. Gabor for his extensive criticism of work on which this
monograph is in part based. Finally, I wish to pay tribute to Dr W.
Glaser, now with the Farrand Optical Company, New York, whose
publications first made me aware of the power and elegance of the

variational method in its application to electron optics.

P. A. S.
CAMBRIDGE
March 1955
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PART I. STATIC ELECTRON OPTICS

CHAPTER I
THE VARIATIONAL EQUATION

1.1. Introduction

The first part of this monograph deals with ‘static’ electron
optics, i.e. the study of the optical properties of beams of electrons,
or other charged particles, which are in steady motion so that,
although the electrons making up a beam are in motion along their
individual trajectories, the appearance of the beam as a whole does
not vary in time.

In constructing a theory of static electron optics, one must take
into account some or all of the following factors:

(a) the corpuscular properties of electrons,

(b) the wave properties of electrons,

(¢) long-range interaction, and

(d) radiation reaction and short-range interaction.

Although the fjnal examination of the performance of an elec-
tron-optical instrument will probably entail consideration of two
or more of these factors, the initial investigation and basic design
are frequently carried out on the assumption that () is predominant.
The major part of the design of an electron microscope would
entail this approximation, although it would be impossible to
calculate the resolving power without consideration of (b). Simi-
larly, the design of a cathode-ray tube can be based largely on the
same approximation, but a more exact estimate of the performance
for high-beam currents would necessitate the introduction of (c).
It will be seen that (d) may always be neglected. Indeed, it is only
if the first factor is dominant that one may expect to obtain image
formation; diffraction effects, high-current densities and, of
course, appreciable variation of the field during the time of transit
of electrons, all tend to mar an image.

The theory of static electron optics which takes account of (a)
and, if necessary, (c), but necessarily neglects (b) and (d), is known
as geometrical electron optics, since, as will be seen in Chapter 2,
much of the theory may be conveniently expressed in terms of

I SEO
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geometrical concepts. Since the fields are static, no interest attaches
to the motion of electrons with time but only to their spatial trajec-
tories so that our study may be further restricted by the definition:

Geometrical electron optics is the study of the spatial trajectories
and of the associated image formation of electrons moving in static
electromagnetic fields, radiation reaction and short-range forces being
neglected and dynamical laws taken in their classical form.

It is natural to regard the spatial trajectories as electron rays, and
it will be shown in this chapter that, under the conditions laid down,
electron rays satisfy a variational equation formally identical with
Fermat’s principle of light optics.}

There are four observations concerning our definition which
should be made at this point. The first is to explain that radiation
reaction becomes important only in particle accelerators such as
the betatron and electron-synchrotron where electrons of very
high energies follow curved paths, and that short-range interactions,
by which we mean forces arising from statistical fluctuation of the
electromagnetic field due to ‘granulation’ of the beam, § are never
significant in electron-optical instruments, since the beams are
not sufficiently dense.

The second point concerns the long-range mteracuon (¢), by
which we mean the Coulomb and Lorentz forces exerted by the
beam, regarded now as a uniform fluid, upon its constituent
elements. These are represented by the space-charge and space-
current distributions, but if their effect is important the technical
difficulty arises that the electron trajectories are determined by
the electromagnetic field while the field is determined partly by
the space charge which in turn depends on the trajectories. Hence
although general rules, such as those to be established in Chapter 2,
are implicitly valid even for high-density beams, explicit calculation
of the effect of space charge will be considered only briefly in §4.5.

The third remark is that, although time itself is of no interest, it
is essential to introduce time as independent variable if electrons

I The term ‘light optics’ is unfortunately both objectional and indispensable.

§ For an estimate of the forces due to ‘granulation’ see, for instance, Micro-
wave Electronics, ed. G. B. Collins (McGraw-Hill, New York, 1948), pp. 221,
222. For a deeper analysis of the separation of Coulomb and Lorentz forces
into ‘short-range’ and ‘long-range’ components, see D. Bohm and D. Pines,
Phys. Rev. 82 (1951), 625-34; 85 (1952), 338-53.
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are ever stationary along their paths, as they are in electron mirrors.
It is not proposed to investigate electron mirrors} in this mono-
graph, but, if it were, this investigation would fit more naturally
into the second part, which deals with dynamic electron optics.

The fourth remark is that we have, by our definition, excluded
from consideration certain calculations which are essential to the
investigation of any electron-optical instrument, namely, the
initial calculation of the electromagnetic field. However, the only
general and practicable method for numerically calculating the
fields of electron lenses appears to be the relaxation method,§
which it would be inappropriate to reproduce in these pages.
Moreover, it is seldom that the fields are computed by numerical
methods; they are more easily determined by means of an analogue
computer such as the electrolytic tank| or the more accurate
resistance network.$ In some cases it is even possible to measure
the field directly.

1.2. Electron-optical units

Since we shall be concerned with only one type of charged
particle,1 1 it will be convenient to introduce units of field potentials
so chosen that no physical constants appear explicitly in our
formulation of the variational equation or, consequently, in the
subsequent theoretical considerations.

However, let us first notice that since the trajectory of an electron
depends, among other things, upon its energy on entering the field,
the optical properties of a field should always be referred to a given
monokinetic or—in optical terminology—monochromatic beam,
i.e. a beam whose electrons all have the same energy on crossing
an arbitrary equipotential surface of the electric field. Any depar-
ture from this condition in an electron-optical instrument will
result in image defects which are classified as chromatic aberration.
Since we are neglecting the short-range interaction of electrons, it is
possible to consider electrons of various energies independently

I The theory of electron mirrors was first developed by A. Recknagel
(Z. Phys. 104 (1937), 381—94), but a modern treatment is to be found in ref. (1).
§ R. V. Southwell, Relaxation Methods in Theoretical Physics (Oxford
University Press, 1946).
|| See refs. (1) and (3).
$ G. Liebmann, Brit. ¥. Appl. Phys. 1 (1950), 93—103.
11 Except in §5.5, where we deal with mass spectrographs.
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so that chromatic aberration may be calculated within the framework
of geometrical electron optics.

Let us now consider a monochromatic beam of electrons moving
in an electric field whose scalar potential, measured in e.s.u., is ¢¥*.
We may take account of the initial energy of the electrons, as well
as of the energy which they acquire in the field, by adjusting ¢*
so that electrons are at rest at zero potential. If —e is the charge of
an electron, measured in e.s.u., and if 7, and m are the rest mass and
relativistic mass, respectively,

ed* =(m—my) c?, (1.2.1)
where c is the velocity of light; m,, m, ¢ and v, the speed of an elec-
tron, as measured in c.g.s. units.

If there were no electric field but only a magnetic field of strength
H*, measured in e.m.u., normal to the direction of motion of an
electron of the beam, the radius of curvature R of the electron
trajectory could be found by equating the centrifugal force mv?/R
to the Lorentz force evH*/c. We see that H*R=p*, where p¥,

defined by p*=mcvle, (1.2.2)

is a measure of the scalar kinetic momentum.

We shall see in the next section that the variational equation
determining electron rays may be expressed in terms of the momen-
tum p* and the magnetic vector potential A* only. The constants
e, ¢ and m, will therefore be eliminated from our calculations if
they are eliminated from the relations between p* and ¢* and
between p* and H*. On using the well-known relation

m=ml[(1—(v/c)?), (1.2.3)
we find that the first of our relations becomes
P=N(29+¢?), (1.2.4)

and the second retains the form p= HR if we write
B=(emoc®) §%, p=(elmyc)p*, H=(empc)H*. (r.2.5)

Hence we should measure electric potential in units of e/m,c? e.s.u.
and magnetic field strength in units of e/myc? e.m.u.; thus:

Unit of electric potential = 511,200 volts,

Unit of magnetic field strength= 1,704 gauss.
Provided that related units are derived appropriately from these
units, the usual relations between the electric and magnetic field
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vectors and the electric scalar and magnetic vector potentials
remain valid: E=—gradg, H=curlA. (1.2.6)

Electron momentum, expressed as a magnetic quantity, will be
measured in the same units as the magnetic potential (i.e. in units
of 1704 gausscm.).

The above units will be used in all subsequent calculations, but
it should be noted that one may at any time return to e.s.u. and e.m.u.
by means of the formulae (1.2.5).

Since our calculations have been based upon relativistic
mechanics, the relation (1.2.4) is relativistically correct. However,
if the beam energy is small compared with our unit of 511,200 volts,
(1.2.4) may be approximated by

p=+(29), (1.2.4a)
which is its non-relativistic form. Calculations will generally be
relativistically correct.

Let us now consider how we should take into account the
existence of a steady space charge of density p*, measured in e.s.u.,
and a steady space current of density j*, measured in e.m.u. If

WeWHte  p—(4me/myc?)p¥, j=(4me|myc?)j*, (1.2.7)

the inhomogeneous field equations take the simple forms
Vig=—p (1.2.8)

and curl curl A =j. (1.2.9)

It is therefore proposed that we adopt the following units:

Unit of charge = 4524 x 108 coulombs,

Unit of current = 1356 amperes.
The unit of charge density may be expressed alternatively as

Unit of charge density =2-834 x 10! electronic charges/c.c.
It may be established that if a beam of electrons has, at any point,
energy ¢, momentum p, space-charge density p and space-current
density j, then . 2\,
where 1 is the unit vector in the direction of motion.
The most important application of electron optics is, of course,

to systems involving beams of electrons, but it may also be applied,
with only minor modifications, to problems concerning beams of
protons or ions. Since these particles carry a charge of the opposite

(1.2.10)
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sign to that of the electron, it is necessary to replace ¢ and A by
—¢ and —A. The difference in specific charge—the ratio e/m;—
is reflected as the difference in the appropriate units; for instance,
the units appropriate to proton beams are as follows: unit of electric
potential =9-391 x 10%volts; unit of magnetic field strength=3-130
x 10%gauss; umit of space charge==8-310 x 107° coulombjc.c. or
5-187 x 10 electronic charges/c.c.; and unit of current=2:491 x 108
amperes. An alternative is to make all measurements in e.s.u. and
e.m.u. and to regard ¢, p, H, p and j as abbreviations for the expres-
sions given in (1.2.5) and (1.2.7); this would be necessary in the
study of mass spectrographs whose purpose is the determination
of the specific charges of ions.

It is perhaps unnecessary to state that if one is considering the
effect of the space charge of one beam of particles upon the optical
properties of a second beam, the space charge and current of the
first beam should be measured in units appropriate to the second,
i.e. the ‘focused’, beam. However, it is worth noticing that the
relation (1.2.10) would remain valid provided that one measures
the energy and momentum of the first, i.e. the ‘space charge’,
beam in units appropriate to that beam.

1.3. Derivation of the variational equation]

We shall now proceed to derive from the principle of least
action§ the variational equation which will be taken as the basis of
geometrical electron optics.

If the velocity vector v has Cartesian components v,, where
r=1, 2, 3, the principle of least action, as applied to a single electron,

may be written as B gL
8] v.—dt=o, (1.3.1)
A ov

where L is the Lagrangian function, ¢ is time and the notation
o/ov is adopted for the vector operator with components 0/0v,.
The variational operator refers, in this case, to all variations of the
trajectory which leave the terminal points 4 and B and the function
v.(0L/ov)—L invariant. It should be noted that (1.3.1) and all

1 Since it would seem unreasonable to grace every variational formulation of
the ray equations and of the equations of motion with the title of ‘principle’, such
a formulation will normally be referred to as a variational equation.

§ See ref. (12), p. 207, eq. (65.9).
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subsequent equations involving the symbol & are exact only to the first
order in the increments due to 6.

If, for the purposes of this section, the unit of time is so chosen
that the velocity of light is unity, the Lagrangian function for an

electron] is L=1—-\(1—-v¥)+¢—vVv.A. (1.3.2)
The invariance under the variational operation of the function
v.(0L/ov) — L now leads to the invariance of the equation

I+ ¢=1/\(1—2?). (1.3.3)

If s measures arc length along the trajectory, ds=wvd¢, so that the

time integral of (1.3.1) may be replaced by a line integral. If we now

eliminate v by means of (1.3.3), we obtain as the variational equation

defining the rays of a given monochromatic electron beam in a
static electromagnetic field

afj{¢(2¢+¢2)—1.A}ds=o, (1.3-4)

where 1is a unit vector along the tangent to the trajectory and 8 now
refers to all variations of the path which leave the terminal points
invariant.

Equation (1.3.4) will be adopted as the basis of our theory of
geometrical electron optics.

It is interesting (though quite irrelevant) to consider the range of
values of ¢ for which (1.3.4) is physically significant. It is clearly
necessary, for practical electron optics, that ¢>o0. For small
negative values of ¢, the radical becomes imaginary so that, in
classical mechanics, ¢ =o represents a lower impassable boundary.

However, let us suppose that by some process outside the scope
of classical mechanics ¢ were depressed below —2. Let us write

¢=9*-2, (1.3:5)
and assume that ¢* is negative. When ¢ is positive the radical

takes a positive value; when ¢ is negative let us give the radical
a negative value. We then find that (1.3.4) may be written as

B
af (J(—28*+ ¢*3) +1.A} ds=o. (1.3.6)
A

If we now refer to §2 and find the variational equation which
applies to ‘ions’ whose specific charge is the same as that of

1 See ref. (12), p. 349, €q. (99.6).
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electrons, we obtain exactly the form (1.3.6). This shows that
when the energy of the electron is reduced by more than twice its rest
energy, it behaves as a particle with the same mass but positive charge.
This is in agreement with Dirac’s positron theory.

Let us now apply the equation (1.3.4) to the simple problem of
slow electrons moving in a strong magnetic field. In this case we can
neglect the first term of (1.3.4) so that it becomes

B
Jf A.ds=o. (1.3.7)
4

Now the integral (1.3.7), taken around a closed circuit, gives the
magnetic flux enclosed by the circuit, as is readily seen from (1.2.6)
and application of Stokes’s theorem. The equation (1.3.7) therefore
states that the closed circuit formed by a ray and an arbitrary slight
displacement of the ray embraces no magnetic flux. This is possible
only if there is no component of field strength normal to the ray,
so that slow electrons in a strong magnetic field must follow the
lines of field strength.

If we take into account small but finite energy of the electrons,
their paths will differ slightly from the lines of field strength. In
any small neighbourhood their motion must resemble the motion
of electrons in a uniform magnetic field. The latter, as we shall see
later, § is a helix so that slow electrons in a strong magnetic field move
in helices about the lines of field strength.

The variational equation is expressed in (1.3.4) explicitly in
terms of the potentials, but it will be convenient for many general
discussions to write it in the shorter form

6fj{p—l.A}ds=o, (1.3.8)

where p, the scalar momentum of the beam, is given by (1.2.4).
We may observe, incidentally, that for a purely magnetic field, for
which p is a constant, it is not necessary to measure p and A in
electron-optical units although they must be measured in the same
units; if the field is purely electric, the units may be left arbitrary
only if the treatment is non-relativistic. We may also note that the
direction of the ray enters only by way of the unit vector 1 and that

1 P. A. M. Dirac, Quantum Mechanics (Oxford University Press, 3rd ed.
1947), P. 272. § See pp. 19, 20.
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reversal of 1 is equivalent to a change in sign of A. It follows that
electron rays are reversible only if the field is purely electric; if the field
is partly or wholly magnetic, rays can be reversed only if the sense
of the magnetic field is reversed.

Let us now write (1.3.8) in the form

B
8f nds=o, (1.3.9)
4
where the function 7(x, 1) is defined by
n=p—1.A. (1.3.10)

It is now obvious that electron rays possess optical properties, for
(1.3.9) is formally identical with Fermat’s principle of light optics.
We shall, by analogy, call the quantity # defined by (1.3.10) the
refractive index of the field. It is to be remembered that, just as
the refractive index of glass depends on the colour of the light
beam, so the electron-optical refractive index depends implicitly
upon the energy with which the electron beam enters the field.

It is well known that the electric scalar potential and the mag-
netic vector potential are to some extent arbitrary. We have made use
of the indeterminacy of the former to combine the initial energy
of the beam with®the potential of the field, but the magnetic poten-
tial A is still arbitrary in that we may add to it the gradient of an
arbitrary scalar distribution y(x), say. Let us investigate briefly
the consequences of this indeterminacy in A.

If we change A to A +grad y, (1.3.8) becomes

B
8f {p—1.A}ds+dx,—Ox»=0, (1.3.11)
4

where the suffix @ or b will generally denote that a function is
evaluated at 4 or B, respectively. Since J refers to variations for
which 6x,=Jx, =0, the integrated terms of (1.3.11) vanish. Hence
the variational equations formed from equivalent potential distributions
are themselves equivalent.

We see from (1.3.10) that, at any point, the refractive index is
isotropic or anisotropic—i.e. it does not depend upon or depends
upon the direction vector—according as the magnetic potential
vanishes or does not vanish, respectively, at that point. It is obvious
that, by replacing a distribution A by a distribution A +grady,
where y is suitably chosen, the refractive index may be made isotropic
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at any finite number of points so that the notion of isotropy at a point
is without physical significance.

Let us now consider the refractive index over a surface (or
finite number of surfaces). If we resolve the vector potential at
each point of this surface into components A, and A, which are
normal and tangential, respectively, to the surface at that point,
there will clearly be no difficulty in eliminating A, by adding to A
the gradient of some potential distribution. However, it will not
be possible simultaneously to eliminate A, unless it is possible so
to arrange the distribution of x in the surface that A,+grad,x
vanishes, where grad,y is the tangential component of grad y. By
considering integrals along arbitrary closed curves lying in the
surface and applying Stokes’s theorem, we find that the necessary
and sufficient condition for this to be possible is that the normal
component of curl A vanishes. Hence the refractive index may be
made isotropic at all points of a given surface if and only if the normal
component of the magnetic field strength is zero at all points of the
surface.

The necessary and sufficient condition that, given a vector
potential distribution A, we may find a scalar distribution X such
that A+grad y=o throughout a given volume is that curlA
vanishes throughout the volume. It follows that the refractive
index may be made isotropic over a given volume if and only if the
magnetic field strength vanishes throughout the volume. If we say
that a field is isotropic at a point if it is possible to make the refractive
index isotropic throughout a small volume containing the point
and anisotropic otherwise, we see that an isotropic field is one which
is purely electric whereas a field which is partly or wholly magnetic
is anisotropic.

1.4. The electrostatic lens

Now that the variational equation has been established, it will
be instructive to make a preliminary investigation of one or two
typical electron-optical systems in order to determine how the
equation may be applied to certain simple but important calcula-
tions, and in order to decide what further calculations we shall
ultimately wish to make. In this section we shall establish the
paraxial imaging properties of an electric field of rotational sym-



