Fundamentals of j

Structured COBOL
_ ROBERT C.NICKERSON

i

Fundamentals of

Structured COBOL

Robert C. Nickerson

San Francisco State University

£%/ Little, Brown and Company

Boston Toronto

Library of Congress Cataloging in Publication Data

Nickerson, Robert C., 1946-
Fundamentals of structured COBOL.

Includes index.

1. COBOL (Computer program language) 2. Structured
programming. [I. Title.
QA76.73.C25N524 1984 001.64'24 83-19528
ISBN 0-316-60648-0

Copyright © 1984 by Robert C. Nickerson

All rights reserved. No part of this book may be reproduced in any form or by any
electronic or mechanical means including information storage and retrieval systems
without permission in writing from the publisher, except by a reviewer who may quote
brief passages in a review.

Library of Congress Catalog Card No. 83-19528
ISBN 0-31b-b0L48-0

9 87 6 5 4 3 21

MU

Published simultaneously in Canada by Little, Brown & Company (Canada) Limited
Printed in the United States of America

The previous edition of this book was entitled COBOL Programming: A Structured
Approach

Acknowledgment

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the pro-
gramming system and language. Moreover, no responsibility is assumed by any con-
tributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVACE® I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

Disclaimer of Liabilities: Due care has been exercised in the preparation of this book
to ensure its effectiveness. The authors and publisher make no warranty, expressed
or implied, with respect to the programs or other contents of this book. In no event
will the authors or publisher be liable for direct, indirect, incidental, or consequential
damages in connection with or arising from the furnishing, performance, or use of
this book.

Preface

The objective of this book is to provide a thorough, carefully paced introduction
to computer programming in the COBOL language with an emphasis on structured
programming. To accomplish this objective, the book systematically introduces the
elements of COBOL as they are needed for various processing situations. Structured
programming concepts are developed along with, not separate from, language features.
As a result, the reader not only learns the COBOL language but also gains an
understanding of the need for each language element and a grasp of how to develop
well-structured programs in COBOL.

The version of COBOL that is described is 1974 ANS COBOL. The most
widely used features of this version of the language are covered in detail. Although
some of the less common features are not explained in the book, Appendix A gives
the syntax of the complete language. In addition, Appendix B describes some of the
changes that are included in the proposed new ANSI standard COBOL. The book
can be used with any computer that supports 1974 ANS COBOL, including most
minicomputers and microcomputers.

Structured programming concepts are incorporated into the book from the
beginning. Starting with the first example in Chapter 1, all sample programs follow a
structured approach. Basic control structures are discussed early in the book; Chapter
4 is devoted to decision logic and Chapter 5 covers loop control. Modular programming
is also introduced early (Chapter 5). Top-down program design is described in detail
in Chapter 8 and a complete example is given. This chapter also covers other aspects
of program development, including program testing and documentation. Program
structure, style, and understandability are emphasized throughout the book. Structure
charts and pseudocode are discussed at the appropriate points to help explain program
organization and logic. Upon completion of the book, the reader should be able to
develop COBOL programs that are well structured, understandable, and correct.

The book is organized into two parts. The first part, consisting of Chapters
1 through 8, introduces the basic features of COBOL, develops fundamental pro-
gramming methodology, and describes essential program logic. These chapters discuss
COBOL elements and program logic for basic input and output, numeric data processing,
program control, data organization, and report output. In addition, the main ideas
of structured programming are presented. Chapter 8 can be thought of as a capstone
for this part of the book because it brings together and explains in detail many
concepts about program development. Chapter 8 is also a transition to the second
part of the book, which consists of Chapters 9 through 14. These chapters discuss
advanced COBOL features and program logic. Among the advanced topics covered
are data validation, interactive input and output, control break logic, one-, two-, and
three-level table processing including the use of the SEARCH statement, sequential
file processing including file updating and sorting, and indexed file processing. With
some exceptions, the material in Chapters 9 through 14 can be read in any order.

A large number of programming problems are provided at the end of the
book. The problems are arranged into three application groups (sales analysis, inventory
processing, and customer order processing). Problems may be selected entirely from
one group or from different groups. The first approach makes it easier to complete

vi

Preface

more problems because many of them involve modification of previous programs. This
approach also emphasizes the importance of good program design for ease of program
maintenance. The second approach results in a greater variety of applications being
explored. The chapter prerequisite is given for each problem. Test data is provided
for most problems.*

The book covers all of the important topics in the Data Processing Management
Association’s (DPMA) course CIS-2, Application Program Development I, plus additional
topics. The book can be used in a one- or two-semester (quarter) course at two- and
four-year colleges. In addition, the book can be used in courses at specialized computer
schools, in company training programs, and for self-study.

Many features make the book especially useful. These include the following:

* The first section of Chapter 1 contains a brief discussion of essential computer
concepts. This can be used as a review by readers who have had previous
exposure to these topics, or as an introduction for those readers who have no
prerequisite background.

Both terminal (interactive) and punched card program processing are explained
in Chapter 1. This facilitates the use of the book with all types of computers,
including microcomputers.

The book is designed so that programming can begin as early as possible.
After finishing Chapter 2, the reader can write simple but complete programs
of his or her own design. After each succeeding chapter, increasingly complex
programs can be prepared.

Many examples are provided throughout the book. There is at least one
complete program in each chapter, and many chapters have several complete
examples. All complete programs were tested on a computer using a 1974
ANS COBOL compiler, and sample input and output are shown for each
program. Many partial programs are also used to help explain the concepts.
One common application (sales analysis) is used throughout the book. Because
of this, the reader does not have to learn a new application with each example.
Alternative applications are introduced where they are most useful.

The book discusses a number of system topics that the programmer needs to
know. Among these topics are record layout, report design, file organization,
interactive input/output design, table usage, system flowcharts, file usage,
and system controls. These topics are integrated into the book at the points
where they are most appropriate.

Questions at the end of each chapter review the material covered in the
chapter. The answers to approximately half of the review questions are found
in Appendix G.

Flowcharts are discussed in Appendix C. This location allows the topic to be
covered at the most appropriate time. All flowcharts are keyed to examples
in the book.

A separate student workbook is available. The workbook contains additional
material to assist the student in understanding and applying the chapter topics.
Included are format summaries, a glossary of terms, additional review questions and
answers, and short coding problems with solutions.

An instructor’s manual is available that contains teaching suggestions, course
schedules, chapter objectives, lists of terms, a complete set of lecture notes, answers
to end-of-chapter review questions, and test questions and answers. Also available
is a set of transparency masters. Approximately half of the transparency masters
are figures from the book; the other half are new illustrations. By using the lecture

* All names of persons, companies, and organizations in examples, problems, and questions in
this book are fictitious and are used for illustrative purposes only.

Preface vii

notes and transparencies made from the masters, a complete course in COBOL pro-
gramming can be taught.

The ideas for a book such as this always come from numerous sources. I am
grateful to the many professors, writers, colleagues, and students who have contributed
in some way to this book. My special appreciation goes to Gary Hammerstrom who
read much of the manuscript and provided many excellent suggestions. I also appreciate
the time spent by Sultan Bhimjee in helping me to clarify my thinking on some
topics. The manuscript reviewers did an excellent job, and their comments were
especially useful. I would like to thank Henry Etlinger, Jerome Myers, David Presser,
Kathy Timmer, Murray Berkowitz, William Moloney, and Victor Shtern for their
participation in the reviewing. Many of their suggestions have been incorporated
into the book.

Finally, I would like to thank my family for their support and help during
the sometimes trying writing process.

Contents

1 Introduction to COBOL Programming 1
1-1 Computer Concepts 1
1-2 The COBOL Language 10
1-3 Basic COBOL Concepts 11
1-4 A Sample Program 15
1-5 Running a COBOL Program 17
1-6 A Preview of the Programming Process 24
Review Questions 25
2 Essential Elements of COBOL 27
2-1 The Identification Division 27
2-2 The Environment Division 28
2-3 The Data Division 31
2-4 The Procedure Division 40
2-5 An Illustrative Program 53
2-6 Summary of COBOL Syntax 53
Review Questions 58
3 Programming for Numeric Data Processing 60
3-1 Input and Output of Numeric Data 60
3-2 Internal Program Data 69
3-3 The Arithmetic Statements 73
3-4 An [llustrative Program 85
3-5 Field Size of Computational Results 87
Review Questions 89
4 Programming for Decisions 92

4-1
4-2
4-3
4-4

The IF Statement 92
An Mustrative Program 98

Program Logic for Decision Making 100

Nonnumeric Comparison 109
Review Questions 112

ix

X Contents

5 Programming for Repetition and Modular Programming 115
5-1 The PERFORM Statement 115
5-2 Controlling Loops 121
5-3 Modular Programming 130
Review Questions 141

6 Data Organization 144

6-1 COBOL Data Structure 144

6-2 Identifying Data 148

6-3 Processing Data 150

6-4 Working Storage Data 156

6-5 Input and Output Data 159
Review Questions 166

7 Report Qutput 169

7-1 Report Design 169

7-2 Printer Control 172

7-3 Headings 177

7-4 Totals 180

7-5 An Illustrative Program 181

7-6 Multiple Page Reports 186
Review Questions 194

8 Program Development 197

8-1 Program Structure 197
8-2 Program Understandability 200
8-3 Program Style 203
8-4 Program Logic — Pseudocode 207
8-5 The Programming Process 211
8-6 Conclusion 230

Review QQuestions 231

9 Additional Features and Program Logic — 1 233

9-1 Redefining Data 233

9-2 Advanced Editing 238

9-3 Condition Names 242

9-4 Class and Sign Conditions 244

9-5 Complex Conditions 247

9-6 Figurative Constants 251

9-7 Data Validation Logic 253
Review Questions 266

Contents

xi

10 Additional Features and Program Logic — II

10-1
10-2
10-3
10-4

10-5
10-6
10-7

Additional PERFORM Statements 269

Sections in the Procedure Division 276

The GO TO/DEPENDING Statement 278

The ACCEPT and DISPLAY Statements — Interactive
Input/Output 279

The COMPUTE Statement 287

Control Break Logic 291

Multiple-Level Control Break Logic 304

Review Questions 308

269

11 One-Level Tables

11-1
11-2
11-3
11-4
11-5
11-6

Table Concepts 312

Assigning Data to a Table 318

Table Processing Techniques 322

An Illustrative Program 325

Tables with Group Item Elements 333
The SEARCH Statement 338

Review Questions 346

312

12 Multiple-Level Tables

12-1
12-2
12-3
12-4
12-5
12-6

Two-Level Table Concepts 349

Processing Two-Level Tables 353

Assigning Data to a Two-Level Table 358

An Illustrative Program 361

The SEARCH Statement with Two-Level Tables 370
Three-Level Tables 374

Review Questions 380

349

13 Sequential Files

13-1
13-2
13-3
13-4
13-5

File Concepts 382

COBOL Elements for Sequential File Processing 391
Sequential File Creation and Access 395

Sequential File Updating 403

File Sorting 419

Review Questions 425

382

14 Indexed Files

14-1
14-2
14-3
14-4

Indexed File Concepts 427

Environment and Data Division Entries for Indexed Files
Indexed File Creation 431

Indexed File Access 439

429

427

xii Contents

14-5
14-6

Indexed File Updating 446

Summary of COBOL Elements for Indexed File
Processing 459

Review Questions 461

Programming Problems

I
II
III

Sales Analysis Problems 463
Inventory Problems 473
Customer Order Problems 483

463

Appendices

QEEOOQOw

COBOL Language Summary 493

New ANS COBOL Features 511

Flowcharts 516

The USAGE and SYNCHRONIZED Clauses 528
The STRING, UNSTRING, and INSPECT Statements
The Library Feature 536

Answers to Selected Review Questions 538

493

531

Index

551

Chapter 1

Introduction to COBOL programming

A computer is a device that is used to solve problems. The process that a person goes
through in instructing a computer how to solve a problem is called programming.
Programming involves combining words and symbols that are part of a special language.
COBOL is a language that is commonly used for programming solutions to business
problems.

This book is about programming in the COBOL language. The book describes
the main rules of COBOL and explains the general process of computer programming.
It also presents and explains many programming examples for common business
problems. As a result, you will not only learn the fundamentals of the COBOL
language but also gain an understanding of the programming process and an insight
into common business computer applications.

In this chapter we introduce the basic concepts necessary to begin studying
COBOL. The first section reviews elementary computer concepts. We then present
the basics of the COBOL language and describe the general process of programming
in COBOL. After completing this chapter you will have the background needed to
begin learning to program in COBOL. Later chapters will go into detail about the
COBOL language, the programming process, and business computer applications.

1-1 Computer concepts

Three topics that should be reviewed before studying COBOL are computers, programs,
and data. Basically, a computer is an electronic device that processes data by following
the instructions in a program. A program is a set of instructions that is stored in
the computer and performed or executed automatically by the computer. Data* is
facts, figures, numbers, and words that are stored in the computer and processed
according to the program’s instructions.

Computers

A computer consists of several interconnected devices or components. One way of
viewing the organization of a computer is shown in Figure 1-1. In this diagram,

* The word “data” is most correctly used as a plural noun. The singular of data is “datum.” The
usual practice, however, is to use the word data in a singular rather than plural sense. We will
follow that practice in this book.

Introduction to COBOL programming Chapter 1

Figure 1-1. The organization of a computer

Central Processing Unit
(CPU)

Processor

Input > Internal > Output
device storage device
A
\

Auxiliary
storage

boxes represent the different components of the computer and lines with arrowheads
show the paths taken within the computer by data and program instructions. There
are five basic components: the input device, the output device, the internal storage,
the processor, and the auxiliary storage. Sometimes the internal storage and processor
together are called the central processing unit or CPU.

In this subsection we describe each of the components diagrammed in Figure
1-1. Figures 1-2, 1-3, and 1-4 show actual computers with many of the components
discussed here.

Input and output devices. An input device is a mechanism that accepts data from
outside the computer and converts it into an electronic form understandable to the
computer. The data that is accepted is called input data, or simply input. For example,
one common way of entering input into a computer is to type it with a typewriter-
like keyboard. This keyboard is an input device. Each time a key is pressed, the
electronic form of the symbol on the key is sent to the computer.

Another way of entering input into a computer is to use a device that reads
the data from punched cards (‘IBM” cards). Figure 1-5 shows an example of punched
card input. The patterns of holes in the card represent different data. An input device
for punched cards recognizes this data and transforms it into an electronic form
understandable to the computer. Such a device is called a card reader.

An output device performs the opposite function of an input device. An output
device converts data from its electronic form inside the computer to a form that can
be used outside. The converted data is called output data, or simply the output. For
example, one of the most common forms of output is a printed document or report.
We often call this a computer “printout.” Figure 1-6 shows an example of printed
report output.

Section

1

Figure 1

Figure 1-3. An) ute I IRM Syt = ()
1 1 DAY | - /370

Central Processing
Unit

Printer

Card Reader

[ntroduction to COBOL programming Chapter 1

Figure 1-4. A microcomputer. This is an IBM Personal Computer
(Courtesy of IBM Corp

Printed output is produced by a device called a printer. This device converts
data from the computer into printed symbols to produce a paper copy of the output.
Instead of being printed on paper, output is sometimes displayed on a TV-like screen.
Such a video display device is called a CRT for cathode ray tube (another name for
a TV tube).

When keyboard input is used with printer or CRT output, the devices are
often combined to form a unit called a terminal. Figure 1-2 shows a computer with
two types of terminals: a printing terminal and a video display (CRT) terminal.

Input and output devices are often referred to together as input/output or
I/O devices. Most computers have several I/O devices attached at one time. For
example, a medium-sized computer may have many terminals plus a card reader and
a printer. Some small computers, however, have only one input device and one output
device (such as a keyboard and a CRT).

Figure 1-5. Punched card input

/121083JDHNSUN ROBERT B2051203610058237050276121 03350056510
n 1

mimn i

0 oooofjoooooooofoooooofooofoochBoo0
1 TEI NN RBUB BTN NNNDUBRDNNINNRDNSRD NN QU aENS 28 i
| EREI RRSRRRERRRRERRRRRRERET SRNET ARRRERRRERET BT RERER] 1
B222222220222220222222202222022222222222222220222222222222222222222222222222222
333330333233333333303333333333303333303333333333330133333333333333333333333333333
4444444444044444444444444444444448444443444444040404448444444444444444444404404444
555555555055M95550555555555055555555555505555555555055M5M55555555555555555555555
6666666Mc666Mo66Mo666666666666666M66666666666M6666666666H666666666666666666666666
IARRRRERRERRRERRRR R RRRRRRRRRRERERER] ERRR] RRRRARERRERNLERERREREREREARERERERERE]
sssslsselececsssscansansalosasesssaslecsaslenceosloesssassasasosas88s08888868888

9999999999599909990993959599989999999)
11345 ¢ ey “was “

0
e T T R R R L]

1
]
1 (RRE R R R R RRRERRERRE

ofooooooBoooll B0000000000000000000000
« " »
1 1

00foo 00
1 L] LR
i 11

~O-.- e

NECT! 5081

TEAE G RNUL AN NNRAUGRD AN N L T R T B R R O e T]

\ 3 i El NUBR 3

Section

-1

Computer concepts 5

Figure 1-6. Printed report output

YEAR-TO-DATE SALES REPORT

SALESPERSON SALESPERSON
NUMBER NAME SALES RETURNS NET
0005 BENNETT ROBERT 2,850.35 38.00 2,812.35
0016 LOCK ANDREW S 382.72 95.35 287.37
0080 PARKER JAMES E 90,700.14 555.00 90, 145,14
0239 HAINES CYNTHIA L 101,000.00 2,200.00 98,800.00
0401 REDDING OLIVIA 116,159.15 24,052.64 92,106 .51
ou77 SMITH RICHARD A 35,450.00 510.00 34,940.00
0912 EMERY ELIZABETH G 36,200.35 1,730.15 34,470.20
1060 ROBINSON WILLIAM L 60,350.00 25.00 60,325.00
1083 JOHNSON ROBERT 63,311.96 893.55 62,418. 41
IARN FREDERICKS RICHARD 52,600.00 483.50 52,116.50
1133 MARSHALL M S 55,000.00 .00 55,000.00
1205 HOLT BENTLEY 14,881.74 413.52 14,468.22
1374 BENTON ALEX J 55,600.13 6,267.50 49,332.63
1375 TAYLOR EVERETT 32,250.00 1,125.00 31,125.00
1420 EHRHARDT ELISE 4,890.64 981.00 3,909.64
1442 ADAMS JUNE R 96,771.46 1,572.36 95,199.10
1612 LOCATELLI FRANK 14,750.00 1,505.00 13,245.00
1698 GUZMAN JOSE 32,460.00 183.00 32,277.00
1842 COLE ROBERT N 106,650.39 21,637.92 85,012.47

TOTALS 972,259.03 64,268.49 907,990.54 *

The central processing unit. Between the input devices and the output devices is the
component of the computer that does the actual computing or processing. This is the
central processing unit, or CPU. (See Figure 1-1.) Input data is converted into an
electronic form by an input device and sent to the central processing unit where the
data is stored. In the CPU the data is used in calculations or other types of processing
to produce the solution to the desired problem. After processing is completed, the
results are sent to an output device where the data is converted into the final output.

The central processing unit contains two basic units: the internal storage and
the processor. The internal storage is the “memory” of the computer. Data currently
being processed is stored in this part of the CPU. Instructions in the program being
executed are also stored in the internal storage.

The processor is the unit that executes instructions in the program. Among
other things, the processor contains electronic circuits that do arithmetic and perform
logical operations. A computer can do the basic arithmetic tasks that a human can
do; that is, a computer can add, subtract, multiply, and divide. The logical operations
that a computer can do are usually limited to comparing two numbers to determine
whether they are equal or whether one is greater than or less than the other. Complex
data processing is accomplished by long sequences of these basic operations.

The processor also contains electronic circuits that control the processing in
the other parts of the computer. The control circuits perform their function by following
the instructions in the program. The program is stored in the computer’s internal
storage. During processing, each instruction in the program is brought from the
internal storage to the processor. The control circuits in the processor analyze the
instruction and send signals to the other units based on what the instruction tells
the computer to do. The execution of one instruction may involve actions in any of
the other parts of the computer. After one instruction in the programmed sequence
is executed, the next is brought from internal storage to the processor and executed.
This continues until all the instructions in the program have been executed.

Auxiliary storage. The final component of a computer is the auxiliary storage. This
component stores data that is not currently being processed by the computer and

Introduction to COBOL programming Chapter 1

programs that are not currently being executed. It differs from internal storage,
which stores the data and instructions that are being processed at the time by the
computer. Sometimes internal storage is called primary storage and auxiliary storage
is called secondary storage or mass storage.

A common type of auxiliary storage is a magnetic disk, which resembles a
phonograph record. Disks are available in different sizes: some about 5 inches or less
in diameter and others as large as 14 inches across. Information is recorded on the
surface of the disk by patterns of magnetism. A magnetic disk drive is a device for
recording data on magnetic disks and for retrieving data from the disks.

Another type of auxiliary storage is magnetic tape, which is much like audio
recording tape. Magnetic tape comes in reels of various sizes and even in cassettes.
Data is recorded on the surface of the tape by patterns of magnetism. A magnetic
tape drive is a device that records data on magnetic tape and retrieves data from the
tape.

Most computers have several auxiliary storage devices attached at one time.
For example, a computer may have four disk drives and two tape drives. Other types
of auxiliary storage can also be used; however, magnetic disk and magnetic tape are
the most common.

Computer hardware. The physical equipment that makes up a computer system is
called hardware. Computer hardware consists of keyboards, printers, CRTSs, terminals,
card readers, CPUs, disk drives, tape drives, and other pieces of equipment. Figures
1-2, 1-3, and 1-4 show typical computers with the hardware that we have described.

Programs

A computer program is a set of instructions that tells the computer how to solve a
problem. A program is prepared by a person, called a programmer, who is familiar
with the different things a computer can do. First the programmer must understand
the problem to be solved. Then he or she determines the steps the computer has to
go through to solve the problem. The programmer then prepares the instructions for
the computer program that solves the problem.

To illustrate the idea of a computer program, let us assume that we want to
use a computer to solve the problem of finding the sum of two numbers. The computer
must go through a sequence of steps, as follows. First the computer must get two
numbers from an input device. Then the numbers must be added to find their sum.
Finally the sum must be sent to an output device, possibly a printer, so that we can
see the result. Thus, a computer program to solve this problem would have three
instructions:

1. Get two numbers.
2. Add the numbers.
3. Print the result.

The instructions would be prepared in a form the computer could understand. Once
this was done, the program could be executed by the computer.

In the remainder of this subsection we explain how such a program is executed,
what languages are used to prepare programs, and what types of programs are needed.

Program execution. To execute a computer program the instructions in the program
must be entered into the computer using an input device. For example, the instructions
can be keyed in using a keyboard or they can be punched in cards and read with a
card reader. The program is then stored in the computer’s internal storage.

In executing a program the computer goes through the instructions one at a
time in the sequence in which they are stored. For example, assume that the program

Section 1-1 Computer concepts 7

to find the sum of two numbers has been entered into the computer and is stored in
internal storage. The computer would bring the first instruction in the program from
internal storage to the processor. Then execution would proceed as follows:

1. Get two numbers. The processor examines this instruction and sends a
signal to the input device that causes two numbers (input data) to be
transferred to internal storage. The second instruction is then brought to
the processor.

2. Add the numbers. To execute this instruction the processor issues a signal
to internal storage that causes the two numbers to be sent to the arithmetic
circuit in the processor. Then the numbers are added and the result is
stored in internal storage. The last instruction is then brought to the
processor.

3. Print the result. The processor executes this instruction by sending a signal
to internal storage to transfer the result to the output device. Then the
output device prints the output data.

Two important concepts are illustrated by this example. The first is that
internal storage is used to store both program instructions and data. All instructions
in the program are stored in internal storage before the program begins execution.
Data is brought into internal storage as the program executes.

The second important concept is that the instructions in the program are
executed in the sequence in which they are written. The sequence must be such that,
when executed, the problem is correctly solved. If the instructions are out of order,
the computer cannot figure out what the right sequence should be. In such a case,
the computer would follow the instructions in the order in which they appear and
thus produce an incorrect result.

Computer programming languages. A program must be written in a form that a
computer can understand. Every instruction must be prepared according to specific
rules. The rules form a language that we use to instruct the computer. Humans use
natural languages such as English and Spanish to communicate with each other.
When we communicate with a computer we use a computer programming language.

To write a sentence in a natural human language, we form words and phrases
from letters and other symbols. The construction of the sentence is determined by
the grammar rules of the language. The meaning of the sentence depends on what
words are used and how they are organized. A computer programming language also
has rules that describe how to form valid instructions. These rules are called the
syntax of the language. The meanings or effects of the instructions are called the
semantics of the language. For example, the syntax of a particular computer language
may say that one type of instruction has the following form:

ADD field—name, field-name GIVING field—-name

That is, the instruction consists of the word ADD, followed by two field-names separated
by a comma, then the word GIVING, and finally another field-name. (Of course, we
must know what a field-name is in order to complete the instruction.) The semantics
of the language tells us that this instruction means to add the values identified by
the first two field-names and to assign the result to the third field-name. (We will
study this instruction in detail in Chapter 3.)

In this book we discuss the syntax and semantics of the COBOL computer
programming language. COBOL is just one of many programming languages. In fact,
there are several groups of languages and many different languages in each group.

One group of languages is called machine language. This is the language in
which a computer actually does its processing. To a computer it is a series of electronic

