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Foreword

This is the second EDBT conference. The first took place in March 1988 in Venice
and was such a success that it was decided to create a biannual event and hold the second
also in Venice. The intent in creating the conferences has been to provide an international
forum appropriate for the exchange of results in research, development and applications
which eztend the scope of database technology. The conferences are designed to facilitate
and extend communication among researchers and between academia and industry. They
are also intended to be international level European conferences providing a high quality
forum for the European database research community.

The program committee received 175 papers. These came from 28 different countries,
the largest contributors being the USA, West Germany, France, Italy and the United
Kingdom. A wide range of topics was covered, the most popular being object-oriented
systems, database and Al, logic and databases, data structures and query processing.
From these 175 papers, we had the difficult task of selecting 27 papers. We also selected
an invited speaker, Carlo Zaniolo who addresses the issue of deductive databases and their
transition from the technology development phase to the system implementation phase.

Two panels were chosen to address some of the most burning issues of the field, the
impact of theory on systems in the past and in the future, chaired by David Maier, and the
two “competing” fields of object-oriented databases and of deductive databases, chaired
by Michele Missikoff.

We are extremely grateful to all the people who helped organize the conference: all the
members of the organization committee, all the program committee members, Florence
Deshors and Pauline Turcaud for their help in organizing the paper selection and program
committee work, Philippe Richard and Paris Kanellakis who helped in the paper handling
process. '

Frangois Bancilhon
Costantino Thanos
Dennis Tsichritzis
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Deductive Databases—Theory Meets Practice

Carlo Zaniolo

MCC
3500 West Balcones Center Drive
Austin, Texas 78759
USA

Abstract

Deductive Databases are coming of age with the emergence of efficient and easy to use
systems that support queries, reasoning, and application development on databases through
declarative logic-based languages. Building on solid theoretical foundations, the field has ben-
efited in the recent years form dramatic advances in the enabling technology. This progress
is demonstrated by the completion of prototype systems offering such levels of generality, per-
formance and robustness that they support well complex application development. Valuable
know-how has emerged from the experience of building and using these systems: we have
learned about algorithms and architectures for building powerful deductive database systems,
and we begin to understand the programming environments and paradigms they are conducive
to. Thus, several application areas have been identified where these systems are particularly
effective, including areas well beyond the domain of traditional database applications. Finally,
the design and deployment of deductive databases has provided new stimulus and a focus to
further research into several fundamental issues. As a result, the theory of the field has made
significant progress on topics such as semantic extensions to Horn logic and algorithms for
compilation and optimization of declarative programs. Thus, a beneficial interaction between
theory and practice remains one of the strengths of Deductive Databases as the field is entering
the ‘O0s and the age of technological maturity.

1 Background

Deductive Databases are coming of age with the emergence of efficient and easy to use systems
that support queries, reasoning, and application development on databases through declarative
logic-based languages.

Interest in the area of Deductive Databases began in the ‘70s, with most of the early work
focusing on establishing the theoretical foundations for the field. An excellent review of this
work and the beneficial impact that it had on various disciplines of computing, and the database
area in particular, is given in [GMN]. Throughout the ‘70s and the first part of the ‘80s, concrete



system implementations of these ideas were limited to few ground breaking experiments [Kell]. This
situation contrasted quite dramatically with the significant system-oriented developments that were
taking place at the same time in two fields very close to deductive databases. The first field was
relational databases, where systems featuring logic-based query languages of good performance,
but limited expressive power, were becoming very successful in the commercial world. The second
field is Logic Programming, where successive generations of Prolog systems were demonstrating
performance and effectiveness in a number of symbolic applications, ranging from compiler writing
to expert systems.

A renewed interest in deductive database systems came about as a result of the flare-up of
attention and publicity generated by the idea of Fifth Generation Computing. It was realized that
the rule based reasoning of logic, combined with the capability of database systems of managing
and efficiently storing and retrieving large amounts of information could provide the basis on which
to build the next-generation of knowledge base systems. As a result, several projects were started
that focused on extending Prolog systems with persistent secondary-based storage management
facilities [RaSh] or on coupling Prolog with relational databases [JaCV, KuYo, Li, CeGW]|. Several
commercial systems are now available that support the coupling of SQL databases with Prolog or
expert system shells. In particular, is the system described in [Boc, LeVi| provides close integration
between Prolog and Database facilities, and smart algorithms for supporting recursive queries
against the database.

Yet several other researchers were critical of the idea of using Prolog as a front-end to relational
databases. In particular, it was noted that the sequential left-to right execution model of Prolog
was a throw-back to navigational query languages used before relational systems. In relational
systems, the user is primarily responsible for correct queries, and the system takes care of finding
efficient sequencing of joins (query conjuncts), thus optimizing navigation through the database—a
special module called the query optimizer sees to that [Seta). In Prolog, instead, the programmer
must carefully select the order of rules and of goals in the rules, since the correctness, efficiency
and termination of the program depend on it. A second problem follows from the fact that efficient
Prolog implementations are based on a abstract machine (WAM) and features (pointers) that rely
on the assumption that data resides in main memory rather than secondary store [War]. Thus
a number of research projects opted for an approach that builds more on extensions of relational
database technology than on adaptations of Prolog technology. While several of these projects
limited their interests to extending query languages with specific constructs such as rules and
recursion, projects such as NAIL! [Meta] and LD L [Cetal, NaTs| feature declarative languages
of expressive power comparable to Prolog. This paper recounts and summarizes the author’s
experience in designing, developing and deploying the £D [ system.

2 Overview
The motivation for designing and building the LD [ system was twofold:
e To provide support for advanced database applications, with a focus on expert systems and

knowledge based applications.

e To provide better support for traditional database applications by integrating the application
development and database queries into one language—thus solving the impedance mismatch
problem.



A serious problem with current database applications is due to the limited power of languages
such as SQL, whereby the programmer has to write most of the application in a procedural lan-
guage with embedded calls to the query language. Since the computing paradigm of a procedural
language, such as COBOL, is so different from the set-oriented declarative computation model of
a relational language, an impedance mismatch occurs that hinders application development and
can also cause slower execution [CoMa]. Realization of this problem has motivated a whole line
of database research into new languages, commonly called database languages [BaBu|. The typical
approach taken by previous researchers in database languages consisted in building into proce-
dural languages constructs for accessing and manipulating databases [Sch77, RoSh|. Persistent
languages, where the database is merely seen as an extension of the programming language, rep-
resent an extreme of this emphasis on programming languages. In a sharp departure from these
approaches, LD L focuses on the query language, and extends it into a language powerful enough
to support the development of applications of arbitrary complexity. Rather than extending cur-
rent database query languages such SQL, however, LD L builds on the formal framework of Horn
clause logic—a choice that had less to do with the well-known shortcomings of SQL, than with
the influence of Prolog (a language based on Horn clause logic). In fact, we were impressed with
the fact that this rule-based language was effective for writing symbolic applications and expert
applications as well as being a powerful and flexible database query language [Zanl].

A closer examination on why Horn clauses represent such a desirable rule-based query language
reveals the following reasons:

o Horn Clauses are akin to domain relational calculus [Ull], which offer two important advan-
tages with respect to tuple calculus on which languages such as SQL are based—but the
two calculi are known to be equivalent in terms of expressive power. One advantage is that
domain calculus supports the expression of joins without explicit equality statements; the
other is that lends itself to the visualization of queries —both benefits vividly demonstrated

by QBE [UlI].

o Horn clauses support recursion and complez terms (through function symbols) thus eliminat-
ing two important limitations of relational query languages and systems.

o Horn clauses have a declarative semantics based on the equivalent notions of minimal model
and least fixpoint [Llo, vEKo. '

e Horn clauses can also be used effectively as a navigational query language.

As the last two points suggest, Horn clauses can be used effectively as either a declarative
query language or navigational one [Zanl]. In the declarative interpretation of Horn Clauses, the
order of goals in a rule is unimportant (much in the same way in which the order of conjuncts
in a relational query is immaterial). The navigational interpretation of Horn clauses follows from
the operational semantics of Prolog. Under this interpretation, goals are executed respectively
in a left-to-right order, and the programmer is basically entrusted with the task of using this
information to write terminating and efficient programs. For instance, when the goals denote
database relations, the order defines a navigation through the database records; the programmer



must carefully select the best navigation, e.g., one that takes advantage of access structures and
limits the size of intermediate results.

A most critical decision in designing LD L was to follow the path of relational systems and
build on the declarative semantics, rather than on the operational interpretation of Horn clauses.
This approach was considered to be superior in terms of data independence and ease of use.
Indeed this approach enables the user to concentrate on the meaning of programs, while the
system is now entrusted with ordering goals and rules for efficient and safe executions. A further
step toward declarative semantics was taken by freeing the user from the concern of whether
forward chaining or backward chaining should be used in executing a set of rules. Current expert
system shells frequently support only one of these two strategies; when they provide for both,
they leave to the programmer the selection of the proper strategy for the problem at hand and
its encoding as part of the program. In LDL, the actual implementation is largely based on
a forward chaining strategy which is more suitable for database applications [Ceta2]. But the
compiler has also the capability of using rule rewrite methods, such as the magic set method
or the counting method [BMSU, SaZl, SaZ2|, to mimic backward chaining through a bottom-
up computation. Thus the LDL user is also provided automatically by the system with the
functionality and performance benefits of backward chaining. This substantial progress toward
declarative programming represents one of the most significant contributions to the technology of
rule-based systems brought about by the research on deductive database systems in the recent
years.

Another major area of progress for deductive databases is that of semantics. Indeed many
other constructs beyond Horn clauses are needed in a language such as LD £ to support application
development. In particular, £LD L includes constructs supporting the following notions:

¢ Negation [ApBW, Nag, Przl],
s Sets, including grouping and nested relations [BNST, ShTZ|,
o Updates [NaKr, KNZ]

¢ Don’t-care non-determinism [KrN1].

Most of these constructs (excluding set terms) are also in Prolog—they were added because
they were needed for writing actual applications. But, in Prolog, their semantics is largely based
on Prolog’s operational model. Therefore, a major challenge of the LD L research was to define a
formal declarative semantics for these constructs, in a way that naturally extends the declarative
semantics of Horn clauses. The problem of extending the power of declarative logic is in fact the
second main area of recent advances promoted by research in deductive databases. Of particular
interest is the fact that many open problems in knowledge representation and non-monotonic
reasoning have been given a clearer definition, and in some cases brought close a solution by these
new advances [MaSu, Prz2]

The combined challenge of designing a powerful and expressive language, with declarative
semantics, and efficient techniques for compilation and optimization describes the whole first phase
of LDL research. This began in mid 1984, and culminated in the implementation of the first
prototype at the end of 1987. This prototype compile LD L into a relational algebra based language
FAD for a parallel database machine [Bor]. Rule rewriting methods, such as magic set and counting,



were used to map recursive programs into equivalent ones that can be supported efficiently and
safely by fixpoint iterations [BMSU, SaZ1, SaZ2|. A description of this system is given in |Cetal].

The implementation of the first LD L prototype confirmed the viability of the new technology,
but did little to transfer this technology from the laboratory to actual users, since FAD is only
available on an expensive parallel machine. Seeking a better vehicle for technology transfer, a new
prototype system was designed with the following characteristics:

¢ Portability,
¢ Efficiency,

e Open System Architecture.

This effort produced a portable and efficient £LD L system under UNIX, called SALAD. ' This
implementation assumes a single-tuple, get-next interface between the compiled LD L program and
the underlying fact manager (record manager). This provides for more flexible execution modes
than those provided by relational algebra [Cetal, Zan1)|. The new design yields better performance,
since the optimizer can now take advantage of different execution modes, and the compiler can cut
out redundant work in situations where intelligent backtracking or existential optimization can be
used [CGK2, RaBK|. SALAD includes a fact manager for a database residing in virtual memory
that supports efficient access to the complex and variable record structures provided in LD L. By
using C as an intermediate target language and an open system architecture, SALAD ensures
portability, support for modules, and for external procedures written in procedural languages—
including controlled access by these routines to internal SALAD objects.

The SALAD prototype was completed in November 1988, and has undergone improvements
and extensions during 1989. By the end of 1989, the system includes a fully functional optimizer, a
powerful symbolic debugger with answer justification capability and an X-windows interface. The
availability of SALAD led to the writing of significant applications and to the emergence of an LD [
programming style. It was found that, in addition to supporting well database applications, LD L is
effective as a rule-based system for rapid prototyping of applications in the C environment. Also in
1989, a complete description of the LD L language with sample applications appeared at bookstores
[NaTs], and the first executable copies of SALAD were given to universities for experimentation.

I interpret these events as signs of a maturing technology. But, in the end, only the level
of satisfaction experienced by users with SALAD or similar systems can confirm or disprove my
claim that deductive databases are coming of age. To promote this goal, however, this paper will
summarize the highlights of my experience with the LD [ system, hoping that the readers will be
enticed to experiment with it and then become enthusiastic users of the system. Therefore, the
paper focuses on the functionality and usability aspects of the system. The reader interested in
the architecture and enabling technology is referred to a recent overview [Ceta2]

3 Declarative Programming and Debugging

A declarative semantics for rules offer several advantages over the operational one, including the
following ones:

'SALAD—System for Advanced Logical Applications on Data.



o Naturalness,
e Expressive Power,

o Reusability and Data Independence.

Frequently, the most natural definition of a programming object is inductive. For instance,
the following LD L program defines all the integers between zero and K, using Peano’s inductive
definition (zero is an integer and if J is an integer, so is J+1).

int(K,0).
int(K,J) « int(K,I), I< K, J = I+41.

The LDL compiler has no problem turning this definition into an efficient fixpoint iteration.
This pair of rules, or any one obtained by scrambling the order of their goals, cannot be supported
by any interpreter or compiler implementing the backward chaining strategy. For instance, in
Prolog the user must be go through some interesting contortions to recast this program to fit the
operational model.

As the next example, consider the situation where there is a binary tree of atoms. For instance
a tree with leaves a and b will be represented by the complex term tree(a, b). Associated with
the leaf nodes of a tree there is a weight represented by facts such as

node(a, 1).
node (aa, 2).
node(ab, 3).

The weight of a tree is inductively defined as the sum of the weights of its two subtrees. We want
now to define all the trees with weight less than a certain M. Immediately from these definitions
we derive the following rules.

w(N, W, M) «— node(N, W), W < M.
w(tree(T1,T2), W, M) «— w(T1,W1), w(T2, W2), W = Wi+W2, W < M.

This simple definition is not implementable with backward chaining and, unlike the previous
example, we do not know of any set of rules that will support this predicate well in Prolog (assuming
that the weights of the nodes are not known before hand). While forward chaining is the preferred
strategy for these two examples, there are many situations where backward chaining is instead the
only reasonable strategy. For instance, say that a tree is at hand and its weight must be computed,
as per the the following query goal (where 10000 denotes a value high enough not to be a factor
in the computation).

? w(tree(aa,tree(a,ab)), X, 10000).

In this situation, the LD £ compiler simply mimics backward chaining by the use of a rewriting
method—the efficient counting method in this particular case [SaZ3|. What is most important here
is that the program has not changed. The same program works for different situations and the



compiler/optimizer takes care of matching the actual execution method to the problem at hand.
The final result is a level of reusability of programs that is well beyond that of Prolog programs. The
elimination of cuts, replaced by the choice and if-then-else constructs, is also very beneficial in
terms of reusability [Zan1]. The concept of reusability for database programs is an extension of the
notion of data independence, defined as the ability of queries and applications to survive changes
in the database physical organization. In relational databases the key instrument in delivering
data independence is the optimizer. In LD L the optimizer ensures data independence, reusability
of code and economy of programming, since the user can call the same module or predicate with
different set of bindings.

The previous example was inspired by an Alkane Molecules generation problem Tsur| that
was first proposed to illustrate the power of functional languages. The same problem was quite
easily formulated in £LDL due to the ability of expressing inductive definitions and to the ease
of checking equivalent structures while avoiding cyclic loops, discussed next. Semantically the
structures previously discussed are unordered trees. Thus, a given tree is equivalent to those
obtained by recursively exchanging the left subtree with the right one. Equivalence can be expressed
by following set of rules:

eq(T, T).
eq(tree(T1,T2), tree(T2,T3)) « eq(T3, Ti).

Thus two trees are equivalent, if they are equal or if their subtrees have been exchanged and
possibly replaced with equivalent ones. The problem is that the composition of several exchanges
can return the original structure, and the SLD-resolution will cycle. Thus in Prolog the programmer
has to carry around a bag of previous solutions and check for cycles at the cost of inefficiency of
programming and execution. In £D [ instead, the system can deal with cycles automatically and
efficiently. This feature is particularly important in situations involving negations, since it is the
key to a complete realization of stratified negation which avoids the floundering problem of negation
by failure [Przl, Llo].

One of the most interesting aspects of programming with a declarative language is debugging.
Any trace-based debugger would be a little use in £D L since the optimizer rearranges the rules to
a point that they do not resemble the original program. On the other hand, the logical nature of
the system makes it possible to explain and justify the answers, and thus suplsort a truly logical
debugger. The current £D L system provides logical debugging and answer justification capabilities
as sophisticated as those of any expert shell or rule-based system available today.

The conceptual basis for the logical debugger consists in combined why and whynot explanation
capabilities, whereby the system carries out a conversation with the user explaining why a certain
answer was returned, and why another was not returned.

Thus to a user asking
why eq(tree(a, tree(b,c)), tree(a, tree(c,b)).
the system will return the instantiated rule that produced it:

eq(tree(a, tree(b,c)), tree(a, tree(c,b))) «— eq(tree(c,b),tree(b,c)).



