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Preface

This text covers the necessary material for an introductory course in fluid mechanics.
There is sufficient material presented that it could serve as a text for a second course
as well.

The text is designed to emphasize the physical aspects of fluid mechanics and to
develop analytical skills and attitudes in the engineering student. Example problems
follow most presentations of theory to ensure that the student grasps the implications
of the theory and is able to apply it. In topics that involve more than elementary
calculations, step-by-step processes outline the procedure used so as to generalize the
students’ problem-solving skills. To demonstrate the design process beyond the
problem-solving techniques, an appendix presents some of the more general consid-
erations involved in the design process.

Elementary fluid mechanics is one of the basic core courses of undergraduate
engineering, along with statics, dynamics, mechanics of materials, thermodynamics,
and heat transfer. I have endeavored to show linkages to these subjects as well as to
elementary physics, to both build on previously learned knowledge and to provide a
bridge to courses to be taken in the future.

T have included frequent references to applications throughout the text, as well as
an appendix on the history of fluid mechanics. Fluid mechanics is a required subject
for many engineering programs, and a student starting such a course is frequently not
sure why the subject is of importance. I have found that including such material in
my own teaching has enhanced student interest in the subject and resulted in a more
appreciative audience.

The subject matter is organized in the following manner:

o Chapters 1 and 2 serve as an introduction to the subject. Terms and concepts are
defined and the student is given practice with pressure calculations. A general
procedure for attacking engineering problems is suggested.

o Chapter 3 is really the heart of the book. The concept of control volume is presented,
along with the fundamental equations of continuity, momentum, and energy. These
presentations are for one-dimensional analysis. Chapter 4 extends this theory to three
dimensions with the development of the Euler and Navier-Stokes equations. I have
included some simple solutions of these equations, which is not traditional for
textbooks at this level. I have done so because I feel that without applications,
development of the theory leaves the typical undergraduate student with rather
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xiv Preface

a “so-what™ feeling. This chapter can either be presented following Chapter 3 or
delayed to a later portion of the course, depending on the instructor’s goals. Some
instructors may wish to omit it completely.

e Chapter 5 considers the subject of dimensional analysis and provides a road map
to the chapters that follow.

» Chapters 6 and 7 develop elementary viscous flow theory and general Reynolds
number effects. Chapter 6 deals exclusively with laminar flows, and Chapter 7
with turbulent flows. In pipe flow calculations I have supplemented the tradi-
tional Moody diagram with two others, so that the student can solve problems
directly and avoid having to deal with trial-and-error solutions of pipe flow
problems.

» Chapter 8 deals with open channel flows and Froude number effects. For courses
that focus on such flows, it could follow chapter 3 directly.

¢ Chapter 9 deals with compressible flows and Mach number effects. The material
starts with a general discussion of compressibility, then goes to a brief discussion
of compressibility effects in liquids before finishing with a discussion of
compressibility in gases.

s Chapter 10 gives a summary of measurement techniques suitable for fluid flows,
and Chapter 11 discusses aspects of hydraulic machines.

o The concluding chapter points out some of the more advanced topics in fluid
mechanics, and indicates to the student the type of courses that might be useful
in developing further interest in fluid mechanics.

While at The University of Michigan I have been fortunate to teach a wide variety
of engineering subjects to students in engineering mechanics, mechanical engineering,
civil engineering, chemical engineering, aerospace engineering, naval architecture and
marine engineering, and meteorology and oceanography. This, along with seminars,
serving on doctoral committees, and research and consulting activities, has broadened
my interests and has given insight into the wide range of applications of fluid
mechanics in many areas of engineering. I have tried to include a flavor of many of
these applications in my presentation of the material in this book.

No book can suit all students. When I learn a new subject, I find three or four—or
more—books dealing with it and study all of them. I find that different authors coming
from different points of view help me to find the thread on which to base my own
understanding of the subject, to place it in the context of things I am already familiar
with. | encourage students to do likewise, and to utilize the library at their institution
to the fullest extent.

Many people have influenced my presentation of the material in the book. Certainly
the students I have taught have been a great help in teaching me what is effective in
teaching. Reviewers of early drafts of the book have also been helpful in their
criticisms. I would especially like to thank my wife, June, for her help during the
preparation of this book in typing and grammar suggestions, and in her general support
and understanding of the effort. I would also like to honor the memory of two cherished
people: Chia-Shun Yih, my teacher, colleague, and friend, who first sparked my
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interest in fluid mechanics, and who taught me much, much more: and Vernon A.
Phelps, who broadened my outlook on engineering and suggested new paths to follow.
The world is poorer for their absence.

W. P. Graebel
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chapter 1

Introduction to Fluid Mechanics

Chapter Overview and Goals

This chapter introduces some of the concepts that we will be using throughout our
study of fluid mechanics. We start by defining the term “fluid” and introduce a number
of common fluid properties such as mass density, bulk modulus, viscosiry, and surface
tension. The concepts of stress, absolute and gage pressure, cavitation, Newtonian
fluids, and non-Newtonian fluids, together with the no-slip boundary condition, are
also introduced and discussed. Several examples of applications are given.

By the end of the chapter, you should be familiar with these concepts, and also with
those units of the British gravitational and SI systems of units that are applicable to
fluid mechanics. With the help of Appendix A, vou should be able to express all
guantities in both sets of units.

You should also begin to have a grasp of the magnitudes of the numbers that are
reasonable for the various quantities in each set of units, so that vou will be able
to make judgments as to whether numbers you obtain in calculations are reasonable.
The definitions and concepts introduced in this chapter will occur throughout the book,
therefore it is important to become accustomed to them.

1. Introduction

Since prehistory, mankind has been interested in being able to predict and/or control
how fluids flow. Weather prediction has always been important for agriculture, fishing.
and water transportation. Civilizations have started—and ceased—because of the
availability of water supplies. The transport of water for agriculture, drinking, and
bathing led to such engineering marvels as the aqueducts of the early Romans. Some
of these are still in use after more than 2000 years. Control of air flow to decrease
erosion of the ground; drag on cars, trucks, and airplanes; and the dispersion of
pollutants are all important in our modern lives. Instrumentation for monitoring
pressures and flow rates in blood vessels and pressures in the eye has become an
important diagnostic tool for medicine.

To resolve the engineering problems that arose in these early attempts to predict
and/or control how tluids flow, many people developed individual theories to deal with
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specific isolated problems even before written history. Starting in the fifteenth century with
Newton, and in the sixteenth century with Euler and the Bernoulli family, a general
mathematical formulation of fluid mechanics was begun, culminating in the mid-nine-
teenth century with the work of Navier and Stokes. The latter completed the structure
needed for the general mathematical formulation of fluid inechanics. The great scientific
advances that were made in that period put the mechanics of fluids on a thorough scientific
basis, against which both earlier and later theories and approximations could be tested, and
our knowledge and understanding of the flow of fluids increased.

This scientific understanding of how fluids behaved was needed for the technical
demands of the industrial revolution and the advanced technology that followed. The
development of modern ships and aircraft was possible only because of the general
scientific formulations of the nineteenth century, and the application of theory to
technology in the twentieth century. Based on these fundamental theories, Orville and
Wilbur Wright, Frederick Lanchester, Nicolai Joukowski (also spelled Zhukovskii),
and Ludwig Prandtl made modern aviation and the space program possible. The use
and behavior of fluid flow in transportation, prediction of circulation in the atmosphere
and oceans, power transmission and generation, lubrication, transport of mass and heat,
and so many other areas, makes fluid mechanics one of the cornerstones of our modern
technological society. It would be ditficult to imagine our life today without the myriad
ways in which we have applied our knowledge of fluid flow.

As fluid mechanics developed and our knowledge of the behavior of how fluids
flow grew, the field became divided into specializations, and various technical areas
were given special names. Hydraulics, for example, refers to the flow of liquids in
channels, canals, and pipelines. Pneumatics deals with the flow of air, usually in
small-diameter tubes. Gas dynamics deals with the high-speed flow of gas when
compressibility effects are important. If the fluid density is low enough that means free
paths between molecules are large, we speak of rarefied gas dynamics. For ionized
gases, we talk of plasma flows, and when in the presence of magnetic fields, magnet-
ohydrodynamics. Meteorologists deal with the flow of air in our atmosphere, while
oceanographers are their underwater counterparts. Many other specialities exist, and
new ones are still appearing.

2. Definition of a Fluid

All matter exists in one of three phases: liquid, vapor (or gas), and solid. The word
“fluid” is used as a general term for the first two of these phases, since the basic
mechanical behavior of liquids and gases is very similar. Which phase the matter is in
depends on the values of the various thermodynamic variables such as pressure and
temperature. Two typical plots showing phase and phase changes when the matter is
in static thermodynamic equilibrium are given in Figures 1.1 and 1.2. Figures 1.3 and
1.4 are two-dimensional projections made from Figures 1.1 and 1.2. They show planes
of constant mass density drawn through the critical points of Figures 1.1 and 1.2. The
point labeled “critical point” in these figures corresponds to the point of highest
temperature possible for a liquid-vapor mixture to exist in the equilibrium state.
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Pressure

Figure 1.1. Pressure-density-temperature equilibrium surface for a substance that contracts on
freezing (e.g., carbon dioxide).

The primary difference between a solid and a fluid is in the strength and type of
the molecular bond. A solid is made up of a closely packed molecular structure, where
breaking the bonds requires considerable energy. In a fluid the bonds are looser and
can be easily broken. A fluid is defined as a substance that will deform and move when
a tangential (shear) stress is applied to it, the motion continuing as long as the shear

Pressure

Figure 1.2. Pressure-density-temperature equilibrium surface for a substance that expands on
freezing (e.g., water).



