o
i

\ B oIS AN T

o o T G e A ) ST

SR

S S

=




TP13 53 8760757

CONTROL APPLICATIONS OF
NONLINEAR PROGRAMMING
AND OPTIMIZATION

Proceedings of the Fifth IFAC Workshop,
Capni, Italy, 11-14 June 1985

Edited by
G. DI PILLO

Dipartimento di Informatica e Sistemistica,
University of Rome “La Sapienza”, Rome, Italy

i

AR

E8760757

Published for the

IN'.TERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by

PERGAMON PRESS

OXFORD - NEW YORK - TORONTO - SYDNEY - FRANKFURT
TOKYO - SAO PAULO - BEIJING



U.K.
US.A.

CANADA

AUSTRALIA

FEDERAL REPUBLIC
OF GERMANY

JAPAN

BRAZIL

PEOPLE’S REPUBLIC
OF CHINA

Pergamon Press, Headington Hill Hall, Oxford OX3 0BW, England
Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.

Pergamon Press Canada, Suite 104, 150 Consumers Road, Willowdale, Ontario M2] 1P9,
Canada

Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg, Federal Republic of Germany
Pergamon Press, 8th Floor, Matsuoka Central Building, 1-7-1 Nishishinjuku, Shinjuku-ku,
Tokyo 160, Japan

Pergamon Editora Ltda., Rua Eca de Queiros, 346, CEP 04011, Siao Paulo, Brazil

Pergamon Press, Qianmen Hotel, Beijing, People’s Republic of China

Copyright © 1986 IFAC
All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means: electronic, electrostalic, magnetic tape, mechanical, photocopying, recording or other-

wise, without permission in writing from the publishers.
First edition 1986

Library of Congress Cataloging in Publication Data

IFAC Workshop on Applications of Nonlinear Program-

ming to Optimization and Control (5th : 1985 : Capri, ltaly)
Control applications of nonlinear programming and optimization.
Includes indexes.

1. Automatic control—Congresses. 2. Nonlinear
programming—Congresses. 3. Mathematical
optimization—Congresses. 1. Di Pillo, G.

IL. International Federation of Automatic Control.
I11. Title.

TJ212.2.1339 1985 629.8 86-4957

British Library Cataloguing in Publication Data

IFAC Workshop (5th : 1985 : Capri)

Control application of nonlinear programming
and optimization—(IFAC proceedings)

1. Automatic control—Mathematical

models 2. Nonlinear programming

I. Tide 1I1. Di Pillo. G.

III. International Federation of Automatic Control
IV. Series

629.8'312 TJ213

ISBN 0-08-031665-4

These proceedings were reproduced by means of the photo-offset process using the manuscripts supplied by the
authors of the different papers. The manuscripts have been typed using different typewriters and typefaces. The
lay-out, figures and tables of some papers did not agree completely with the standard requirements: consequently
the reproduction does not display complete uniformity. To ensure rapid publication this discrepancy could not be
changed: nor could the English be checked completely. Therefore, the readers are asked to excuse any deficiencies
of this publication which may be due to the above mentioned reasons.

The Editor

Printed in Great Britain by A. Wheaton & Co. Ltd., Exeter



IFAG

International Federation of Automatic Control

CONTROL APPLICATIONS OF NONLINEAR PROGRAMMING
AND OPTIMIZATION



NOTICE TO READERS

If your library is not already a standing/continuation order customer or subscriber to this series, may we recommend that you place a
standing/continuation or subscription order to receive immediately upon publication all new volumes. Should you find that these volumes no longer serve
your needs your order can be cancelled at any time without notice.

Copies of all previously published volumes are available. A fully descriptive catalogue will be gladly sent on request.

ROBERT MAXWELL
Publisher

IFAC Related Titles

BROADBENT & MASUBUCHI: Multilingual Glossary of Automatic Control Technology
EYKHOFF: Trends and Progress in System Identification
ISERMANN: System Identification Tutorials (Automatica Special Issue)



8760757

FIFTH IFAC WORKSHOP ON CONTROL APPLICATIONS OF
NONLINEAR PROGRAMMING AND OPTIMIZATION

Sponsored by

The International Federation of Automatic Control (IFAC)
Technical Committee on Mathematics of Control
Technical Committee on Theory

Co-sponsored by

University of Rome “La Sapienza”, Rome, Italy

University of Calabria, Cosenza, Italy

University of Salerno, Salerno, Italy

Technical Committees on Engineering and Technological Sciences, National Council of
Researches, Italy

Consorzio Campano di Ricerca per I'Informatica e I’Automazione Industriale, Naples,
Ital

Azien}c/la Autonoma di Cura, Soggiorno e Turismo, Capri, Italy

International Programme Committee

A. Miele, USA (Chairman)
G. D1 Pillo, Italy

F. M. Kirillova, USSR

D. Q. Mayne, UK

N. Olhoff, Denmark

B. L. Pierson, USA

H. E. Rauch, USA

A. Ruberti, Italy

R. W. H. Sargent, UK

K. H. Well, FRG

National Organizing Committee
G. Di Pillo (Chairman)

L. Grandinetti

A. Miele

F. Zirilli



PREFACE

This volume contains a selection of papers presented at the
Workshop on Control Applications of Nonlinear Programming and
Optimization held in Capri, Italy, during 11-14 June 1985.

The purpose of the Workshop was to exchange ideas and
information on the applications of optimization and nonlinear
programming techniques to real 1life control problenms, to
investigate new ideas that arise from this exchange and to look
for advances in nonlinear programming and optimization theory
which are useful in solving modern control problems.

The Workshop benefited of the sponsorship of the
International Federation of Automatic Control (IFAC) through the
Committees on Theory and on Mathematics of Control. It was the
fifth IFAC Workshop on the subject.

The attendance to the Workshop was of fiftyfive experts from
sixteen countries. Four invited and twentysix contributed papers
were presented and discussed; invited speakers were A.E. Bryson,
Jr., R. Bulirsch, H.J. Kelley and J.L. Lions.

The scientific program of the Workshop covered various
aspects of the optimization of control systems and of the
numerical solution of optimization problems; specific
applications concerned the optimization of aircraft trajectories,
of mineral and metallurgical processes, of wind tunnels, of
nuclear reactors; computer aided design of control systems was
also considered in some papers.

The scientific program was arranged by an 1International
Committee chaired by Angelo Miele (USA), with other members being
G.Di Pillo (Italy), F.M. Kirillova (USSR) D.Q. Mayne (UK), N.
Olhoff (Denmark), B.L. Pierson (USA), H.E. Rauch (usAa), A.
Ruberti (Italy), R.W.H. Sargent (UK) and K.H. wWell (FRG) .

All contributed papers included in this volume have been
reviewed; thanks are due, for their contribution in the reviewing
procedure, to R. Bulirsch, J.L. de Jong, P. Fleming, H.J. Kelley,
F.M. Kirillova, J.L. Lions, D.Q. Mayne, A. Miele, H.J. Oberle,
B.L. Pierson, A.L.Tits, K.H. Well and F. Zirilli.

Finally, it was a great pleasure for me to have served as
chairman of the organizing committee.

Gianni Di Pillo

vii
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ON THE ORTHOGONAL COLLOCATION AND
MATHEMATICAL PROGRAMMING
APPROACH FOR STATE CONSTRAINED
OPTIMAL CONTROL PROBLEMS

O. E. Abdelrahman* and B. M. Abuelnasr**

*Department of Mathematics and Computer Sciences, Zagazig University,

Zagaug, Egypt
##Department of Computer Sciences and Automatic Control, Faculty of Engineering,
University of Alexandria, Egypt

Abstract. The orthogonal collocation approach is now well known to solve,
effectively, the state constrained optimal control problems, Mathematical
programming technique was also used as an effective tool to construct the
optimal trajectories. In this paper, a study is done on the efficiency
and accuracy requirements of the combined orthogonal collocation and mat-
hematical programming approach, as regarding the employed optimization
algorithm, and the number of orthogonal collocation points. It is shown,
by experimentation with numerical examples that Fletcher-Powell optimiza-
tion algorithm is much more faster to produce convergence than Fletcher-
Reeves algorithm, The efficiency can be a ratio of six-to-one., The resul-
ts are compared with an alternative approach to solve the same problem.
It is shown that the present algorithm is less costly than the alternative
approach, although requiring more computation time. The choice is then a
compromise one. As the number of orthogonal points increases, the result-
ing solutions are more accurate, but the convergence speed decreases. Ex-
perimentation with N, shows a save of five-to-one in computing time can
be achieved with almost the same cost function, Finally, it is shown, by
a numerical example, that uniformly distributed collocation points result
in non-optimal solutions, which also violate the problem constraints. It

is a numerical proof of the superiority of the orthogonal collocation

approach,

+

Keywords. Orthogonal collocation; mathematical programming; optimization

algorithms; convergence speed; state constrained problems,

INTRODUCTION
State constrained optimal control problems
pose a challenging two point boundary val-
ue problem(TPBVP), Different approaches
exist which solve the resulting TPBVP, The
orthogonal collocation approach, as a meth-
od of approximating functions, is used to
construct the problem solutions with good
to excellent accuracies(Oh and Luss, 1977,
and Abdelrahman, 1980), Combined with mat-
hematical programming, the orthogonal col-
location was used to solve the state cons-
trained optimal control problem(Abuelnasr
and Abdelrahman, 1981), The emphasis on
just getting a numerically programmed sol-
ution without examining the optimization
algorithm, which finally gives the requir-
ed solution, sometimes result in non effi-
cient solutions, as far as computation
time is concerned., In this paper, a look
at two optimization algorithms, namely
that of Fletcher-Reeves and Fletcher-Powell
(Kuester and Mize, 1973), is shown to give
a comparatively large efficiency. Also,we
look at the approximating method of the
orthogonal collocation, It is found possi-
ble to obtain almost optimal solutions
with a reasonable number of collocation
points, The orthogonality of the collocat-
ion points is also shown to be the right
choice for approximating the solution of
problem, as an otherwise choice based on
non-orthogonal collocating points will
give erroneous results.

STATEMENT OF THE PROBLEM

AND ITS SOLUTION
Given the state description of the dynamic
system as

x(0) = x (1)

% = f(x,u,t) , 5

where x(t) is an nxl! state vector, u(t) is
an rxl1 control vector, and f(x,u,t) is an
nx1 vector function of x,u,and t., The
control vector u(t) is assumed unconstrai-
ned,

It is required to minimize, with respect
to u, the cost functional

t
J(u) = gf L(x,u,t) dt, (2)

subject to the differential constraints of
Eqe(1), and the state inequality constrai-
nt

s(x,t) <0 (3)

The solution of the above posed problem,
using the orthogonal collocation approach
is well known(Abuelnasr and Abdelrahman,
1981). Here, we give a brief outline of the
steps which will lead finally to the posed
problem solution., Thus, the solution of the
problem will consist of three stages. The
first stage formulates a TPBVP for the
following unconstrained optimization prob-
lem,
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Minimize J(u), given by Eq.(2), with respe-
ct to u , subject to the differential con-
straints given by Eg.(1). This is done by
defining the Hamiltonian of the problem

H(x,u, A st) =L(x,u,t) + *F flx,u,t), (4)

where A(t) is an nx1 adjoint vector, known
also as Lagrange multiplier vector, and

( )T denotes vector transposition., The fol-
lowing canonic equations and the necessary
condition of optimality will result

. _9H
Y (5)
h LS
dx
g—Hz 0 (6)

al

Using Eq.(6) in Eq.(5) will give the foll-
owing two sets of eguations

x =f(x, A ,t) , x(0) = %, e

A =glx,,t) , Altgl= 0,
while the optimal control, u(t) is obtained
from Eq.(6). In Egs.{7),8 is an nx! vector
function of x, A, and t, Also, the solution
of Egs.(7)poses a TPBVP,

The second stage is the transformation of
the TPBVP, obtained from the first stage,
into a corresponding set of algebraic equ-
ations by using the collocation of x(t)

and A(t) over the time interval (0,t.)

(see Appendix I)., Good to excellent accur-
acies can be achieved using collocation
points chosen as the zeros of transformed
Legendre polynomials(: transformed Legendre
polynomial is a Legendre polynomial defined
on (0,1))0

Denote the set of algebraic equations by
My) =0, (8)

where y is a vector of order 2nx(N+1), n
being the problem dimension, and N is the
number of interior collocation points. The
details of getting Eq.(3) is illustrated
in Appendix I(the case of unconstrained
optimal control problem is illustrated ,
where the state equations are linear and
the cost is a quadratic in x and u).

The components of y are those of x(t) and
A(t) at the interior collocation points,
i.e., y can be written as

Y= Yye t % 5 (9)
where Yy, and y are , respectively, the

approximations of x(t) and A (t), using
orthogonal collocation, Also, y can be
partitioned into two components,y, and Ines

where y~ is an mx(N+1) vector of constrain-
ed staté components, m being the dimension
of the constrained variables in the inequ-
ality (3), while Yyc.is a (2n-m)x(W+1) ve-
ctor of unconstraihgd components and the
adjoint vector at (IN+1) points,

Finally, the third stage solves a constra-
ined optimization problem by using the
technique of mathematical programming, Thus

(1) The inequality constraint(3) is
transformed into an equality constraint by
introducing a slack variablep¢(t), to obt-
ain

s(x,t) + 0.50¢2(t) = 0 (10)

The equality (10) is then evaluated at the
N interior collocation points chosen as
the zeros of transformed Legendre polynom-
ials to give

G(ycac() =0 , (1)
where G is an mx(N+1) vector,

(ii) Construct a cost function,CF, as
follows

2n(N+1)
CF = 2> Fi(y) (12)
=

where Fi is the ith component of F,

(iii) Minimize the cost function,CF,
subject to the equality constraint given
by Eq.(11), using a suitable optimization
algorithm,

NUMERICAL EXAMPLES
The examples introduced below are extracted
from the control literature(Jacobson and
Lele, 1969). A comparison of this work with
other authors work can thus be done to eva-
luate the presented algorithms,

Example 1,
consider

X = X5, x,(0)= 0

; (13)
Xy = =X, tu, x,(0)= -1

with the following performance index to be
minimized with respest to u

t
£
J(u):{ (x% +x2 + 0,005 u?) at, (14)

2
subject to the inequality constraint
x,(£) = 8(£-0.5)% + 0.5 <0 (15)

The inequality(15) is of the second order,
which means it has to be differentiated
twice to obtain the control u(t).

Formulation of the Solution

The technique of mathematical programming
and orthogonal collocation of section two
will be used to solve the example, Thus,
first, the unconstrained TPBVP is formulat-
ed as follows

X, = X, 5  %,(0) =0

X, = = X5 - 100 A x,(0)==1

e 2 & e (16)
A, = -2%X, )](1) =0

')2 = —ZXZ —>\1 +>\2 ) A2(1)=O

while the optimal control,u(t), is given by
u = - 100X,

Then, introduce the slack variable, oc(t),
to inequality(15) to obtain the equality

x,(£) = 8(£-0.5)%+ 0.5 + 0.5 x2(£)=0 (17)

By following the procedure of the last sec-
tion, a set of algebraic equations are obt-
ained from Egs.(16) and Eq.(17), The optim-
ization algorithms of Fletcher-Reeves and

Fletcher-Powell are then applied to obtain
the problem solution, Table 1 shows a comp-
arison of the speed of convergence of the

obtained solutions, using the two algorith-
ms, For comparison purposes, the correspon-
ding results of Jacobson and Lele(1969) are
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included in Table 1,

TABLE 1 Results of Two Optimization Algorithms

Algorithm Number of Iterations Cost Function,d
Fletcher—Reeves: 466 0.70L5
Fletcher-Powell 76 0.6742

*N=7, the number of collocation points ~_________
Jacobson and Lele(1969) 16 0.75

It is observed, by looking at Table 1, that
the second algorithm, namely Fletcher-Powell
is much more efficient than Fletcher-Reeves.
The efficiency can be measured in terms of
the ratio of the number of iterations to
produce convergence, In the table, Fletcher-
Powell is six times more efficient than
Fletcher-Reeves, By comparison, the Jacobs-
on and Lele approach produces results, whi-
ch are more efficient , although giving a
slightly higher cost. A common feature of
all methods used in Table 1, is the use of
conjugate gradients to search for the mini-
mum of the objective function, Besides,
Jacobson and Lele used the conjugate gradi-
ent in the function space, which proved to
be more efficient than the normal conjugate
gradient(Lasdon, Mitter, and Waren, 1967).
The wide variation in the number of iterat-
ions in the first two lines of the table,

is that Fletcher-Powell is a second order
method, which produces quadratic convergen-
ce(see Appendix II, where a matrix H is used
to accelerate convergence); while Fletcher-
Reeves is a first order method, which gives
linear convergence,

Another point to be discussed, i.e. the

effect of orthogonality of collocation poi-
nts on the approximation of the solution of
the problem, For this purpose, example 1 is
re-solved, but using collocation points not

based on the zeros of orthogonal polynomials,

The points are chosen on an equal interval
basis, The obtained results are shown in
Table 2.

TABLE 2 Results of Two Sets of
Collocation Points

N=7 Cost Function
J
1« Collocation points are * 00,7045

zeros of Legendre polynomials

2, Collocation points % 1,041

distributed equally on (0,1)
* Fletcher-Reeves algorithm is implemented

The resulting trajectories for the choices

in Table 2 are plotted in Fig, 1 . Table 1

and Fig, 1 show a non-optimal solution for
the equal interval collocation points,which
motivates the use of the orthogonal colloc-
ation method for approximating the problem
solutions,

Example 2.

Same as example 1, except that this case
treats a constraint of the first order,
given by

x5(t) =8(£-0.5)% + 0.5 <0 (18)

In this example, N, the number of orthogo-
nal collocation points is given values of
4y5,6,and 7. The results are illustrated

in Table 3 and Fig. 2.

TABLE % Results of Varying N on the
Convergence Speed and the
Optimal Cost Function

N Number of Iterations Cost
Function,d
4 149 04134408
5 112 0. 145040
6 119 04145990
7 505 04136334

Note: A Fletcher-Reeves algorithm is
implemented in this example

Jacobson T TTTTTT
Vand Lele(1969) 16 0.164
(Using the Conjugate Gradient Method)

The table shows, at first, a decrease,then
an increase in the convergence iteration
cycles, This phenomena is due to the inter-
play between the truncation and the round-
off error. As N increases, the accuracy
increases, and consequently the truncation
error decreases., But, the roundoff error
increases by increasing N, There is, thus
a value of N at which there is a minimum
for the combined truncation and roundoff
errors, The figure also confirms the above
claims. The optimum cost function,J, is
not much sensitive to the variatiowu of N,
Thus, based on the number of iterations
and the associated graphs in Fig, 2, an
optimum value for N can be selected, The
presented values of the table show that
N=5 is an optimum choice., For comparison,
the results of Jacobson and Lele are incl-
uded. The same observations and comments
concerning the number of iterations and
accuracy will apply as before. In addition,
the increase of N, is assosiated with an
increase of the number of equations to be
solved, in the form 2n(N+1); and thus more
computation time is needed for convergence,
But, a gain in accuracy is evident as shown
in the third column of Table %« The advant-
age of the conjugate gradient in the funct

ion space is also noteu.

CONCLUSIONS
Looking at the results in the tables and
their associated figures, several conclut-
ions can be reached, The orthogonal collo-
cation and mathematical programming is pr-
esented as an alternative approach tosolve
the state constrained optimal control prob-
lem, It seems appropriate to be compared to
other approaches, as was shown in Table 1,
and Table 3, as far accuracy is concerned,
It is also concluded that the conjugate
gradient in the function space produces fa-
ster'convergence than the normal conjugate
gradient,as used in Fletcher-Reeves and
Fletcher-Powell algorithms, The last concl-
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sion accounted for the relatively smaller
iterations in Table 1 and Table 3 of Jacob-
son and Lele results, The final conclusion
of the paper is a strong preference to the
use of orthogonal collocation other than
any other method of approximating the vari-
ables of the problem,
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APPENDIX I
The orthogonal Collocation Approach for
Unconstrained TPBVP
This appendix is a summary of the necessary
steps followed to solve an unconstrained
TPBVP, using orthogonal collocation . The
procedure is taken from Oh and Luss(1977).
Thus, consider the following problem,
a system is described by

x = f(x,u,t) , x(0)= : (19)

where x,u,and f have been defined before,
and x, 1s the initial state vector. It is

required to find the optimal control funct-
ion,u(t), which minimizes

£
Jw= /T Lix,u,t) at ,
)

(20)

subject to the differential constraint of
Eq.(19). The steps of solving the above po-
sed problem are as follows,

(1)Define the Hamiltonian,H

H(x,u, A, t)=L(x,u,t) + AL(t)f(x,u,t), (21)
From H, obtain the following canonic equat-
ions

?:f(x,} st) x(O):xO (22)
A=g(x, A,t) , l(tf)z 0]
whereAis obtained from
A= 28 , (23)

X
and the optimal control,u, is obtained from
the necessary condition

oH
$T=0 (24)
The set of equations(22) constitutes a
TPBVP,

(2)Choose a number of interior colloca-
tion points,N,as the N zeros of a transfor-
med Legendre polynomial., Then,expand x(t)
and A(t) into a finite power series in t

as follows
N+2

X(t):z ¢ £3=1

N+2 o
Nt)= d. tJ
=T 7

for OSi:Stf. The unknown constants c

(25)

,d.;
JAg2

J=132544¢,0+2 can be determined by satisfy-
ing Egse.(25)at t=0,at t=ty, and at N inter-

ior collocation points. By imposing that
Egs.(22)are satisfied at t:O,t],ta,...,tN,

tN+1:tf, then 2n(N+1) equations will result.

By using the initial condition on x(t) and
the final condition on A(t), another set of
2n equations is obtained,Then, in all,
2n(N+2) algebraic equations can be formed
in the unknowns Cj’dj’ J=132,500e,N+2,

(3)Depending on the form of f and L, the
resulting set of 2n(N+2) algebraic ecuatio-
ns can be solved, giving the unknown coeff-
icients in x(t) and A(t), If f is linear
and L is quadratic functions of x and u, th-
en Eqse.(22) become linear in x andA ., In
this case, the unknown coefficients can be
obtained by solving the following matrix
equation

AC =B
where C =[c¢

(26)
T
1262700050235 d0, 000, dy, 35
is a 2n(N+2)vectri of coefficients, A is a
known square matrix of dimension 2n(N+2),
and B is a known 2n(N+2) vector. If 4 is
invertible, then C is obtained from

c=2"'s

is inverse matrix of A,
(4)Once C is obtained, hence cj,dj;

J=142,400eN+2, By substituting C in

Eqs.(25), approximations of x(t), and A(t),

using N interior collocation points, can be

obtained., Also, the optimal vector,u(t),

can be approximated by using Egs (24) and
the obtained value of Cs a5

(27)
where A™]

APPENDIX IT
Fletcher-Reeves and Fletcher-Powell
Optimization Algorithms
The purpose of these algorithms is to find
a local minimum of unconstrained function
of more than one variable, Both algorithms
use conjugate gradients to generate the
necessary changes in the function variables
Thus, consider the unconstrained minimizat-
ion of the following function

F(X1,X2,...,xp),

using,first, the Fletcher-Reeves algorithm,
The steps proceed as follows
(1)A starting point is selected,i,e.,

%(0),(0)

seeeyX are chosen,

) (2) The direction of steepest descent
is detgrmined by determining the following
direction vector components(normalized
form) at the starting point,

(k) [ _2F (k)
M' = axl
* _5——_h___2;_7~ »1=1,24400,p,
[, 2r)2] ¢
= o

where_k:O, for the starting point,

(3)A one dimensional search is then
conducted along the direction of steepest
descent utilizing the relation,
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)t SM s 1=1,25000,P,

%i (new)™ *i(old
where s is the distance moved in the M dir-
ections, When a minimum is obtained along
the direction of steepest descent, a new
"conjugate direction'is evaluated at the new
point with the following normalized compon-
ents

(k) (k=1)  (k-1)
(k)_ + I M,
T SFCE) (BT 1B )}2 %
[E R V]
where i=1,2,..s,n, and
(%-1) P F (k)
3 = 551[ (3 ]

)(k—1)] 2

f= 1[ (

(4)A one dlmen51onal search is then
conducted in this direction. When a minimum
is found, an overall convergence check is
made, If convergence is achieved, the proc-
edure terminates. If convergence is not ac-
hieved, new '"conjugate direction'" vector
components are evaluated per step(3), This
process continues until convergence is ach-
ieved or n+1 directions have been reached.
If a cycle of nt+l directions have been com-
pleted, a new cycle is started consisting
of a steepest descent direction(step 2)and
n "conjugate directions'"(step 3).

The Fletcher-Powell algorithm proceeds as
follows
(1)Select a starting point,
(2)Compute a direction of search, In
normalized form, this is as follows

P
= Hyy GF J) (k)
() ;

1 P SF 211
& (A o,y ]

where i=1,2,¢44,0, k is the iteration index
(k=0 at the starting point), M. are the
direction vector components,an QFéxJ is the

Jjth component of the gradient vector. H

o

1,d
is the i-j element of a symmetric positive
definite matrix(pxp), which is initially
chosen to be the identity matrix, Thus, the
initial direction of search is the path of
steepest descent,

(3)A one dimensional search is conduc-
ted in the direction chosen by the previous
step until a minimum is located using the
relation

X5 (new)™ Xi(old)+ sMi, i=14250e0e3Ps
where s is the step size in the direction
of search.

(4)A convergence check is made, If co-
vergence is achieved, the procedure is te-
rminated, Otherwise, a new search direction
is chosen per step(2) except H is calc-
ulated as follows

g(e+1) - g(k) 4 (k)
wher:(k) i Ax(E) (Ax(k))T
@axNT (aglk))

56 _ B A ) (agl)T gl
(a g(e))T () A glk)

_ p(k)

() _ ((k+1) _ ()

X
PN
A new one dimensional search is performed

in the new direction. The process is repe-
ated until convergence is obtained,

(gg)(k+1) - (%5)(k)
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