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.., we show modern methods for geometry,

so constructed and organized that geometric manipulations
can be performed in a way natural to the computer,

and can yield results that are natural to man.

Steven Anson Coons



Preface

Les Piegl

Welcome to Fundamental Developments of
Computer-Aided Geometric Modeling: a collection
of papers written by pioneers of Computer-Aided
Design. This book is for every computer
professional who is interested in the scientific
basics as well as in the historical/evolutionary
aspects of computer geometry.

This book is neither a text book nor a history
book. It combines science and history. The
reader will find enough material to understand
computational geometric methods as used in
CAD/CAM, and at the same time the book gives
an exposure to how things were discovered from
the late 1950s. Computer-Aided Geometric
Modeling has helped shape the future of
computer supported design. The contributors of
this volume had vision, knowledge and dedication
to promote progress. Please accept this book as
a reflection of their dedication to the betterment
of the contemporary society.

HOW THIS BOOK CAME TO BE

Five years ago, Jenny Hayes, former Editor
of the journal Computer-Aided Design, was
soliciting contributions from Advisory Editors to
the upcoming 20th anniversary issue. Computer-
Aided Design was founded in 1968, and it was
time to celebrate its 20 years of success. As a
fresh member of the board, I was pleased to offer
a paper, and to suggest that it would be
interesting to pay tribute to pioneering develop-
ments in CAD. The field was so young that
almost all the pioneers were still alive, and it
sounded like a good idea to edit a special issue
with contributions from the pioneers of
Computer-Aided Design. Jenny liked the idea,
however, she argued that a special issue would
be too small a forum, and suggested putting a
book together instead. After a couple of quick
letter exchanges, I was given an offer to edit
an anniversary volume on the pioneering works
in CAD. Being completely green in book
publishing, and having no idea how difficult it

was to edit such a volume, I accepted the job.
What followed after that was a series of
refinements of the initial project. It was clear
that one book was insufficient to cover
the entire spectrum of CAD, so we restricted our
attention to the geometric aspects of Computer-
Aided Design, commonly referred to as
Computer-Aided Geometric Modeling (other
names used are Geometric Modeling, Computer-
Aided Geometric Design (CAGD), Computa-
tional Geometry, etc. — you pick your favorite
name). A series of discussions with well-known
people followed my initial contact, and lots of
modifications were made on the initial draft. By
mid-1988, the scope of the project was more or
less finalized, and the first chapter was completed
(although in French). It took us four more years
to bring the book to completion.

Looking back at the five years I spent on this
book, I have all kinds of memories ranging from
sweet ones to not so sweet ones. I have learned
a lot about people, about publishers, and about
managing a project in which different people are
involved from different countries on different
continents. I hand this book over to the reader
with great sentiments, and in the hope that
he/she will enjoy reading it at least as much as
we enjoyed doing it. This book is unique in the
sense that everything was written by the
inventors themselves weaving their personalities
into the subject. It also provides descriptions on
all the methods used widely in Computer-Aided
Design and Manufacturing.

WHO AND WHAT IS IN THIS BOOK?

There are numerous techniques used to represent
and process geometric information using a
computer. Some of them are useful, and many of
them are considered as mathematical or
computational plums only. Most of them have
become parts of standard university curriculums
in CAD and/or in Graphics, and have
initiated substantial research activities in many



fields including mathematics, computer science,
engineering, art, business, geography; just to
name a few.

We start the book with two French pioneers,
Paul de Casteljau and Pierre Bézier. Working
independently for two French car companies,
Citroén and Renault, they discovered an
approximation method for free-form curve
and surface design. Although company policies
and language barriers did not allow de Casteljau
to publicize his results, his contribution is equally
as important as those who published extensively.
De Casteljau writes about polar forms, whereas
Bézier gives an overview of the first years of
CAD/CAM, and describes the mathematical
basis of Renault’s UNISURF system.

B-splines were investigated thoroughly by
mathematicians way before the advent of
computers in engineering design. Two remarkable
mathematicians, Carl de Boor and Maurice Cox,
have developed algorithms and mathematical
tools for their efficient evaluation and processing.
The basics of B-splines are presented by de Boor,
and algorithms for spline curves and surfaces are
given by Cox.

The application of B-splines to Computer-
Aided Design was investigated by Richard
Riesenfeld. Riesenfeld gives an overview of
B-spline curves and surfaces as used in design.
He also shares his experience of building a
modeler called Alpha_1 as a research testbed.

Interpolation is another way to represent
free-form entities. The chapters by James
Ferguson, William Gordon and Robert Barnhill
discuss curve and surface techniques based on
blending function methods. Ferguson describes
the use of Hermite interpolation for curve,
surface and hypersurface definition. Gordon’s
chapter is the first open account of the so-called
‘Gordon’ surface used at General Motors.
Coons’ patches and convex combinations are
covered by Barnhill, who researched the field
over the past 20 years.

The above techniques are used to represent
one single entity, i.e. a curve, a surface or a
volume. To define more complicated (realistic)
objects, the collection of many simple geometric
entities is required. The new entity is termed
as solid, and is dealt with by lan Braid,
Charles Eastman, Herbert Voelcker and Aristides
Requicha. There are a number of ways to define
a solid, and there are different aspects of solid
modeling. Braid overviews boundary modeling
where solids are described by their boundary
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surfaces. Eastman’s chapter describes architectural
design and research testbeds developed at
Carnegie Mellon University. Voelcker and
Requicha are well known for their research in
Constructive Solid Geometry (CSG), and for the

solid modelers developed at the University of

Rochester. The history of their research
accomplishments at the University of Rochester
is described in their chapter.

Malcolm Sabin has made contributions to
many branches of geometric design. In his
chapter he gives a tour of his 20 years of
investigations into many aspects of computer-
aided geometry.

Computer-Aided Design, at least its geometric
modeling aspects, relies heavily on geometric
methods. All kinds of geometric tools, including
those of classical analytic geometry, projective
geometry, differential geometry and descriptive
geometry, are used to define and process shape
information. Michael Pratt surveys geometric
tools, including those of classical geometry as
well as modern computer geometry, used in the
CAD, as well as in the CAM process.

Inventing a design tool is not the end of the
line in the engineering design process. A
computer system has to be built in such a way
that it is user friendly enough to be useful
for non-computer hackers. No matter how
sophisticated the mathematical scheme is, it is
completely useless if nobody can make it part of
a user-understandable CAD system. Andrew
Armit takes us on an excursion into the world
of several systems he has built over the last 25
years. He describes two of his better known
systems, Multipatch and Multiobject, and
follows by describing more recent and, of course,
more sophisticated systems.

Graphical communication between the com-
puter and the user, and post-processing of the
results for numerical control milling, are two
very important ingredients in the complete design
process. The information should be brought into
the database, and the results should be
interpreted in such a way that they are natural
to the computer as well as to the user. After the
design has been completed and accepted by the
designer, the non-existent object has to be turned
into a real one by, say, carving it out from some
kind of material. The chapter by David Rogers
is about interactive computer graphics and
numerical control as used at the US Naval
Academy’s CAD and Graphics Laboratory.

The last two chapters are by two MIT
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pioneers, Robert Mann and Douglas Ross.
Mann, a close friend and colleague of Steven
Coons, describes research activities in Computer-
Aided Design at MIT from the late 1950s through
to the mid 1960s. Ross concludes the book with
a philosophy of Computer-Aided Design as seen
from a perspective resulting from 30 years’
experience in the field.

REGRETS

I regret that [ was not able to convince Bertram
Herzog and Robin Forrest to contribute to this
volume. I feel their names should be mentioned,
and they should be credited for the significant
work they have accomplished.

APOLOGIES

I offer my apology to those whom 1 have left
out, or whose contributions just could not fit
into this volume. I am sure that the reviewer or
the reader will find someone in the computer
geometry area whose contribution he/she feels
is important to warrant inclusion in this book. I
think to give credit to everybody, one really needs
to edit an encyclopedia. Well, I was not prepared
to edit an encyclopedia.

xi
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1 Polar Forms for Curve and Surface
Modeling as used at Citroén

Paul de Casteljau

Originating in 1958 at Citroén, the methodology
of mathematical definition of shapes (curves and
surfaces) has been taught at the drawing school
of Citroén since 1960 [1]. The shapes are defined
with the aid of pilot points called poles, which
give a good idea of the shape of the curve. From
an algebraic point of view, the poles are
equivalent to segments or patches of parametric
polynomial forms, and possess all of their
properties. They allow great flexibility by a
progressive deformation of the shape under the
influence of the corresponding pole. At the
beginning, the limited performance of the
computing power available at that time forced
us to use simple poles, without considering the
continuity between segments.

The word ‘pole’ comes from the triple
repetition of ‘pol’ in the expression ‘Interpolation
of polynomials with polar forms’. The con-
struction of shapes from the poles is completely
independent of the computation of the poles
from sampled data. The theory is pretty much
algebraic, and is related to integral calculus,
quadratic minimization and orthogonal function
theory. Those notions can create more difficulties
than they solve, and therefore we do not enter
into their details here.

[ started within an exceptional team, spirited
by M. de la Boixiere, who, in the pure tradition
of the Pilgrims (in the sense of caring only for
efficiency) was investigating industrialization by
numerical control. To the great amazement of
the engineers, he constructed, ex nihilo, high
performance machines previously unavailable at
that time. For example, he produced a pneumatic

Editor’s note: the terminology used by the author is
different from that used in several well-known
textbooks such as 1. D. Faux and M. ]. Pratt,
Computational Geometry for Design and Manufacture
(Ellis Horwood, Chichester, 1989). The ‘parameter
sequence’ is the knot vector, ‘Poles’ or ‘Generalized
Poles’ are the control points, sometimes called de Boor
points, and ‘Simple Poles’ are the Bézier control
points.

Fundamental Developments of Computer-Aided Geometric Modeling

ISBN 012-554765-X

paper tape reader, a stepper motor, a variable
speed tape recorder (its impulses were produced
by a car distributor!), an electrical power
cabinet, a five axis milling machine, etc. Nothing
could discourage him. Only one detail remained:
the calculation of the pieces to be machined. The
objective was a forged or cast shape, which was
believed to be mathematically well defined.

Later, my interest turned to car bodies; the
designers were astonished and scandalized. Was
it some kind of joke? It was considered nonsense
to represent a car body mathematically. It was
enough to please the eye, the word accuracy had
no meaning, and wind tunnel testing was done
after the car was already in production. Between
orthogonal cross-sections of a piece, no one
would admit a 0.8 mm discrepancy. Worse, the
difference between the right and left fender of a
car reached the centimeter mark! Far from being
discouraged, I persisted in my desire to make a
test. From then on, there was no doubt, I was
considered insane . . .

The first surface computed with an electro-
mechanical machine was the size of a postage
stamp. It was defined with 350 points of the
cutter location offset surface, and the noise of
the printer annoyed the people nearby! When
M. de la Boixiere saw the mound of paper
tapes, he became doubtful and claimed:
“That will generate a million useless cubics!”
Prudently, Citroén designated a draftsman,
working currently with the author, who digitized
the tool path on a 20:1 drawing so as to achieve
acceptable results.

In the end, it was the mathematician
who comforted the draftsman. The idea of
numerically representing the car body was taken
seriously. Citroén bought a Burrough’s E101
computer (128 program steps, a memory of
about 220, about seven multiplications a second,
and it required 5 kW of power!). This allowed
more ambitious computations, such as the hood,
the dash board, and also ‘the flying saucer’, a
dream of an extinct aviation firm (see Figure
1.1).

Copyright © 1993 Academic Press Limited
All rights of reproduction in any form reserved



PAUL DE CASTELJAU

Figure 1.1 A premiere model from 1962: the ‘Flying Saucer’. Notice the spiral machining marks and the
rectangular and triangular patches.

Being convinced, the management decided to
use this technique inside the company in 1963,
not without some resentment and jealousy, and
this allowed the full drawing of a car, the Citroén
GS, for the first time in history. This generated
a system at Citroén to compute the shape
(SPAC-CAR-G), and another to produce the
machining information (SPAC-CAR-U).

DEFINITION OF POLAR FORMS
Parametric curves

Assume that we are given the points P;, called
poles, and a set of polynomial functions ¢;(z),
i=0,...,n The form

P:

e

¢i(t)P; (1)

0

defines a parametric curve. To make this
definition useful practically, we require the
polynomials to sum to 1 (¥;¢;(¢) = 1), i.e. for
a fixed ¢, ¢;(t) are the barycentric coordinates
of P with respect to the poles P;.

The vector OP can be obtained as the sum of
vectors proportional to the vectors OP;, for any
given origin O, and therefore O is omitted in
later discussion. Expression (1) is valid for each
coordinate, or projection on any line or axis, and
can be extended to several parameters to generate
a surface patch.

Example
¢)i(t’ u) = Cn’itiunii = <n> tiun—i
i

= (t+u)", wheret+u=1.



POLAR FORMS FOR CURVE AND SURFACE MODELING

Two types of surfaces are of practical

importance:

@ rectangular with T + U =1. Each pol\?'
nomial is obtained from (¢ + »)" (T + U)

@ triangular with t+u+v=1. The poly-
nomials are of the form #*ufv” (with
o + B+ y = n) generated by (¢ + u + v)".

Without loss of generality, we may assume that
t, u, v, T and U vary between 0 and 1.

Parameler sequences

We consider the non-decreasing series of
parameters
o<t <...<t<t  <...<t (2)

with the assumption that the number of equal
parameters is less than or equal to the degree of
the curve. The insertion of one (or more) new
t value(s) into the interval [#;, ¢; 1] (¢ # t;1 1)
will generate one (or more) new sequence(s).
This operation is called parameter insertion. In
the discussions that follow, we assume that ¢
denotes either ¢;, a constant ¢,, or the variable ¢.

Symmetric function of the parameters

Any function f(#, t5, . . ., t,) which is invariant
when two variables ¢; and ¢; are exchanged is
called a symmetric functton Newton demon-
strated that we can express this function with
the elementary symmetric functions (see [6] for
details):

f(tla tZ&"'!tn): Z g(xl)xl: :xn)
i=0
where
x1=t1+t2+...+t,,
o+t 1ty

X =ty + 4ty +

Xy =1tity...t,

These functions can be obtained by expressing

1+t)(14+28)...(0+1¢,)
= Sn,O + Sn,l + Sﬂ,Z Fowst Sn,n; Sn,() = 1
(4)

One can easily verify, by introducing the new
factor (1 + t), the following recurrence formula:

Sn+ 1,p — Sn,p + tSn,pfl (5)

Example

Introduce the fourth variable ¢ (which can be ¢,
or t;) to the sequence £y, t,, t3 to get

S40= 1

Sa1= i+ttt t(1)

Sip = b +ht3+6t + (t +t+1t3) (6)
S43= titst3 + t(t ity +tit3 + 1rt3)
S4a= t(t165t3)

Operations on poles

Let us assume that ¢;(¢) in equation (1) are
symmetric functions expressed in terms of
elementary symmetric functions (see (3)) with
variables extracted from (2) (the number of
variables is equal to the degree). We can consider
two types of operation:

1. Insertion: obtained by inserting a parameter
into a given sequence. This creates two
sequences skewed by one unit from one
another

| — n values —|

t,-ét,-_HS...St

1St (7)

]
| —— n values —|

These two sequences will be abbreviated by
s" and s".

2. Difference: the barycentric form

M =uA +tB with

t+u=1 oru=1-—t,



can be expressed as M = A + tAB, where
AB =B — A. We can do the same on the
barycentric form (1) using the sequences s’
and s” (see below).

Multilinear function of degree n

A function E, which is the function of elementary
symmetric functions, can be expressed as follows
(see (5)):

Eltip1;- -

In case ¢ has the values ¢; and t;, and E denotes
a polar form of degree n, we have

Ps/ = K + tiQ

Py =K+ t0Q
where K and Q stand for K;,, _; ;, and
Qit1,..,j—1, respectively, and s" and s” are the

sequences obtained from (7). K and Q can be
expressed as

tP., — t,P.
K=s2i T8 = APy i
t—t
(9)
P, — P,
Q‘— —5Pi+1 ..... j—1

A and ¢ are two true operators applied on the
polar forms giving multilinear forms of degree
n— 1 with indices as the common indices.
We can reiterate these operators to discover
their commutative property, i.e. Ad = JA.
Consequently, we demonstrated the formula

E(tiyq, ..

<t <t

(10)

This algorithm is known as the Cox—de Boor
algorithm used for index insertion. A similar
formula can be obtained using the second
differences AAE, SAE = AOE and 6JE, and
step-by-step we can compute the multilinear
form E.

PAUL DE CASTELJAU

Remark

If we repeat the operators A and 6 » times, we
get the algebraic coefficients of the polynomial
(see example below). Under a change of the
parameter t = k6 + b, the poles, which have a
geometrical nature, will be invariant, and
therefore we can restrict ourselves to the interval
[0, 1], or sometimes to [—1,1], to simplify
calculations.

Example

Consider a degree 3 curve. We use the following
notations: P and A denote the vectors OP and
OA with O as the origin, and B, C and D are
difference vectors, e.g. B points from A (the
startpoint) to the next pole:

P(tl, tz, t) = A + [(tl + tz) + t]B
+ [tita +t(t +1,) JCH+t(t5,)D
(11)
=[A+ (t; + t,)B + ;1,C]

+t[B+ (1 + ,)C + #,1,D]
(12)
From equation (12) we get the poles Py, (for
t =1ty), and P;,3 (for t = #;), called Riesenfeld
points (see Figure 1.2). Similarly, for ¢t = ¢, and

t = t5 we obtain P,3, and P;4;. Using formula
(9), we have

_ 13Pg12 — toP123

3 — 1
=A+ (5 +4)B+ 41,C
(13)
AP, = P53 — Py,
I3 — Iy

= B + (tl + tz)C + tjtzD
which gives P(¢,, t,, t) = AP, + t6P;, in harmony

with (10). Now, computing AP,; and 6P,3, we
have

t}AP]Z - tIAP23

AAPzZ =A+t2B
I3 — 4
APy —
5AP2=23‘AP”‘=B+t2C (14a)
I3 — 4
OoP,; — 6P
55p2=237(5‘2:(3+t21)

I3 —t
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Figure 1.2 Geometric construction of a point for a fixed parameter z. On each segment, only the varying
index corresponds to the ratio. The lines joining the poles are drawn in bold.

With Ps45, we finally get the coefficients of the Difference 1 Difference 2 Difference 3
polynomial B
=A—-3B'+3C'-D’
AAAP = A e
B'—2C'+D
OAAP =B P
= | 10
dSAP = C (14b) =A-2B'+C =L
566P =D = D'
P_gy=A—P <
- B/
Simple poles
Pooo = A (15)
This is a very important particular case. The B’

parameters #;_, t; and ¢;, ; can be repeated up

to a maximum equal to the degree. For Poor=A +B ¢

simplicity, we assume that t;, — t,_; = ¢, — t;. B'+C" D"
Without loss of generality, we can take p  —aA 428 4" C'+D"
t;_1=—1,¢=0and t;,, = 1. This will help e

us to compare two consecutive segments at the

point ¢ = 0: the first is defined by A, B, C, D’ Dmi
for t < 0, and the second is given by A, B”, ", ~ ~AT3B +3C+D
D" for t > 0. Let us compute the difference table =~ where, for example, Py, denotes P(0,0, 1)
for degree n = 3: obtained from equation (11).



Now the study of continuity is straight-
forward, and is a function of the number of equal
coefficients B, C and D corresponding to the
terms, ¢, t*, £ (with C;, omitted):

@® common point A in all cases

@® common tangentifinadditionB’=B" =B

@® continuous curvature if in addition
C'=C"=(C

@ algebraicidentity if in addition D’ = D” = D.

Although this verification was done for n = 3,
it can be extended to any degree. If we set all
the variables in (11) to ¢, the multiplication of
the difference table by C, ,¢” will give the desired
polynomial.

Example

Let us take the case P, = t’:

8
4
12 2
6 1
arc 2,3 18 3
9
27
9
36 3
arc 3,4 12 1 (16)
48 E
16
64
3
o
mn* n
arc m,n
(m=n+1) mn :
mn m
mZ
..

Despite the fact that these tables are longer than
the well-known Newton differences, they do not
have useless coefficients. The successive steps are

PAUL DE CASTELJAU

the poles of the arc. This kind of table
presentation is very useful to verify the continuity
or to compute the coefficients. For more details,
consult [2] or [3].

The simple poles of an arc are unique, and
define the arc independently of the parameter
(generalized poles are dependent on the
parameter sequence). They are also closer to the
curve. For any algebraic arc AB, the unique and
non-ambiguous references are the simple poles
of the arc. It is recognized that Riesenfeld points
provide a more condensed form when the degree
and the number of points are large.

Algebraic calculus using the poles
calculations are based on
parameter insertion. For any sequence of
parameters ty, ..., I;, t/-, Ce e t/, in order to get
the simple poles of the arc [#;¢;] we insert the
parameter ¢; n — p times and the parameter ¢;
n — q times, where n is the order of the curve
and p and g are the original repetitions of the
indices of 7 and j, respectively.

At the beginning of the arc (defined by t; with
initial repetition p), because we have inserted the
parameter t; n — p times, this will generate n — p
algebraic common conditions in the difference
table, and therefore set the continuity ¢ to n — p.
We can see that, not including the point at the
beginning, we have, on both consecutive arcs,
n — p simple poles which are derived from the
same sequence of poles.

The algebraic

Example

Given degree 5, and the parameter sequence
012223345566, what is the continuity ¢ at the
point P; of parameter ¢t =3? To define arcs
[t5, t3] and [#3, t4], we need at least five indices
before 3 and after 5. It is necessary to insert index
3 three times (n = 5, p = 2), and then inserting
index 4

Py3233

P1333
P1y334 Py3333
Py3334 P33333
Py3345 P33334
P33345

P33455
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then: (17)

P33333

P33334
P33344

P33345 P33444

P33445

P33455

We see a continuity ¢ = n — p = 3. The reason
is that the common algebraic elements are up to
P,5533 or P33444 on the simple poles (set in bold).
The other simple poles will use different elements
containing other indices, and are of a different
algebraic nature.

If we want to obtain the endpoints of a curve,
it is necessary to repeat the first and the last
indices n times each. On the other hand, it is
possible to close a curve by taking the parameter
sequence as a circular list: #) <f <...<
tr=1ty <t ... < tf etc.

Construction of a point on the curve

One has to insert the index ¢t g times where, as
above, g is the original repetition of the index.
As an example, for n =3 and g =2 we have
(see Figure 1.2):

Riesenfeld points: Simple poles:
Po12 P22
Pya P2
Pyy; Py Pyy3 P
Py, P,, Py, P,, (18)
Py34 Pes Py33 Pes
Piss Pys3
P34s P333

We have also solved the subdivision of the arc,

also called sub-poles (bold).

Subdivision of an arc

This is derived from the polar definition. The
q = 2 insertions of the parameter ¢ (see above)

generate a new sequence where the poles (bold)
replace the old ones. This problem has also been
solved by Boehm for B-splines. The advantage
of the poles resides in their simplicity. All the
problems have their solution in the multilinear
definition. Furthermore, no distinction is made
between ‘knots’ and ‘nodes’, because the
interpolation is completely disconnected from
the definition of the arc.

Geometric construction

Geometric construction reflects exactly what has
already been said so far. On any line, the poles
are different by only one index, and the
corresponding points divide the legs in the same
ratio as do the parameters ¢; the parameter line
(see Figure 1.2). Geometry is independent of the
origin of the indices and their absolute length,
provided that the proportions are presented.
Therefore, the application of poles is a wonderful
example of affine geometry. In Figure 1.2, the
geometric construction is illustrated using
generalized as well as simple poles (which are

indicated by bold lines).

Homogeneous form

The homogeneous form u+:t=1 is well
adapted to compute the simple poles and to
preserve the proportion u/t (see Figure 1.2):

Py
uPyy; + tPyy3>Pyy,
Py uPyy, + P3Py,

uPry3+1tPr33 Py uPyy + tPy3—Pyy,

P33 1Pz + tPr33Py3

P33+ tP333> P33

P}}}
(19)
and

P(t) = P(ttt) =

314 thz; + 314th233

r‘a
[
~

The terms of the expansion of (# + t)3 are the
coefficients of the poles. The sub-poles are P,,,,
P2yts Pyys Py @nd Py, Py, P33, Piss.



