

Oceanography An Introduction

Dale E. Ingmanson William J. Wallace San Diego State University

Wadsworth Publishing Company Belmont, California A Division of Wadsworth, Inc. Oceanography Editor Jack Carey
Special Projects Editor Mary Arbogast
Editorial Assistant Susan Belmessieri
Production Editor Leland Moss
Designer Carolyn Deacy
Print Buyer Barbara Britton
Art Editor Toni Haskell
Copy Editor Caroline Arakelian
Photo Researcher Stuart Kenter
Technical Illustrator Tasa Graphics Arts, Inc.
Compositor Graphic Typesetting Service
Cover Carolyn Deacy
Cover Photograph William Garnett

© 1989, 1985 by Wadsworth, Inc. © 1979, 1973 by Wadsworth Publishing Company, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Wadsworth Publishing Company, Belmont, California 94002, a division of Wadsworth, Inc.

Printed in the United States of America 49 2 3 4 5 6 7 8 9 10—93 92 91 90 89

Library of Congress Cataloging-in-Publication Data

Ingmanson, Dale E.
Oceanography: an introduction / Dale E. Ingmanson, William J.
Wallace, David H. Milne.—4th ed.
p. cm.
Bibliography: p.
Includes index.
ISBN 0-534-09552-6
1. Oceanography. I. Wallace, William J. II. Milne, David.
III. Title.
GC16.I53 1989
551.46—dc19

88-17213

Oceanography An Introduction

To all those who make their living respectfully on, in, or about the ocean.

Preface

The earth has often been viewed as a possession to be subdued and exploited. The ocean that makes up about 70% of the earth has not been easily subdued or exploited despite heroic attempts. As a result, people still refer to the ocean as a frontier or as a vast resource that will enable us to solve such problems as food shortage or a shortage of valuable minerals. One reason for writing Oceanography: An Introduction was to explore the myths and realities according to our present understandings of the ocean.

In our opinion textbooks should present the guiding philosophy of the authors very early on. Our book was the first general oceanography text to take serious issue with environmental topics. When one considers the recent (March, 1986) statement by the Foundation for Oceanographic Research that there has been more marine pollution in the past ten years than in the previous 400 years combined, it is obvious that people must be made aware of the problems before they can become concerned. But real awareness is based on understanding. So the primary aim of this book is to present the fundamental geological, chemical, physical, and biological marine processes necessary to understand the ocean environment. We hope this understanding and awareness will help to generate the desire to help in the preservation of this planet's last frontier.

We have been on, in, and around the ocean all of our lives. From a purely pragmatic viewpoint this quote by Kenneth Grahame is worth a mention: "There is nothing—absolutely nothing—half so much worth doing as simply messing about in boats . . . or with boats . . . In or out of 'em, it doesn't matter." This would include, of course, scientific activity as well.

This fourth edition of *Oceanography* is substantially rewritten and updated. An extensive survey of faculty who have read or adopted the text and of students in our classes at SDSU has been used to help guide us to make substantial changes. The sequence of chapters remains the same as the last edition with discussions of the chemical and physical properties of sea water split into two chapters.

Dr. David Milne, marine biologist from Evergreen State College, has completely rewritten the three chapters dealing with marine biology. Highly knowledgeable about current concepts in marine biology, Dr. Milne is an experienced teacher of undergraduate students and a capable writer.

The chapters dealing with marine geology have been substantially rewritten and updated with the suggestions made by Dr. Tjeerd van Andel of Stanford University.

This text remains the only introductory oceanography text with a chapter on polar oceanography, an area receiving increasing scientific attention.

The chapters on marine resources, ocean technology, pollution, and management have been extensively updated with more than fifty new or revised tables and figures. There are also new sections on marine transportation, marine recreation, and the exclusive economic zone.

The book emphasizes visual materials: There are over four hundred line drawings and photographs, more than three hundred of which are original. Many illustrations have been added to this edition. Illustrations are essential to an oceanography text because some students have never experienced the ocean in person, while many others have seen it only from the shoreline or from the deck of a boat, usually in only a few locales. If properly executed, illustrations can be good substitutes for direct observation.

This edition continues an extensive glossary based on the *Glossary of Oceanographic Terms* published by the U.S. Naval Oceanographic Office and other specialized sources. Key terms are set in boldface type for easy identification. Also, coastal maps of the USA show coastal configuration, locations, and the 30- and 100-fathom contours.

To give the book another dimension, we display at the beginning of each chapter an original photograph along with quotations from the works of Carroll, Melville, Conrad, Whitman, Arnold, and others. We hope these quotations and photographs will convey the variety of human experience with the ocean in a stimulating way. As Alice said, "What is the use of a book without pictures?" (Lewis Carroll).

Extensive Manuscript Review

We would especially like to thank the many reviewers who contributed their time and ideas to all four editions.

Edward Aguado / San Diego State University

David Alt / University of Montana

Franz E. Anderson / University of New Hampshire

Scott M. Ascher / Meramec Community College

William Balamuth / University of California, Berkeley

Charles Breitsprecher / American River College

Harold L. Burstyn

Frank Carsey / JPL

Bert L. Conrey / California State University, Long Beach

Herbert Curl / Oregon State University

Christopher Dewees / University of California, Davis

Clive Dorman / San Diego State University

Michael Dowler / San Diego State University

Charles L. Drake / Dartmouth College

Robert Eberhardt / San Diego Community College

Donald Eidemiller / San Diego State University

William P. Elliot / Oregon State University

Theodore L. Esslinger / North Dakota State University, Fargo

Reinhard Flick / University of California, San Diego

Tom S. Garrison / Orange Coast College

Michael T. Ghiselin / California Academy of Sciences

William Glen / College of San Mateo

Ralph Gram / California State University, Hayward

Gary B. Griggs / University of California, Santa Cruz

Howard R. Hetzel / Illinois State University, Normal

Tom Hopkins / Brookhaven National Labs

Donald E. Keith / Tarleton State University

Robert C. King / San Jose City College

Phyllis Kingsbury / Drake University

Donald Klim / Leeward Community College

Ronald Kong / American River College

Eugene Kozloff / University of Washington

Gerald Kuhn / Scripps Institution of Oceanography

Rivian S. Lande / Long Beach City College

Norma Lang / University of California, Davis

Lawrence H. Larsen / University of Washington

Ruth LeBow / University of California, Los Angeles

Donald Lovejoy / Palm Beach Atlantic College

D. McGeary / California State University, Sacramento

Joseph W. MacQuade, Jr. / North Shore Community College

J. Robert Moore / University of Wisconsin

Steve Murray / California State University, Fullerton

Steve Neshyba / Oregon State University

Dennis N. Nielsen / Winona State College

Jerry O'Donnell / Del Mar College

B. L. Oostdam / Millersville University

Jan A. Pechenik / Tufts University

Charles F. Phleger / San Diego State University

Nan Pickett / University of Wisconsin-Eau Claire

K. M. Pohopien / Mount San Antonio College

Barry G. Quinn / Westminster College

Robert Riffinburgh / Naval Ocean Systems Center

Stuart A. Ross / University of Southern California

John Schopp / San Diego State University

Thomas W. Spence / Office of Naval Research

James J. Sullivan / University of California, San Diego

Mia Tegner / Scripps Institution of Oceanography

Stan Ulanski / James Madison University

Tjeerd Van Andel / University of Cambridge, UK

Ellen Weaver / San Jose State University

Edgar Werner / Inter-American University

Kelly Williams / University of Dayton

Contents

Preface / xiii

ONE

The Ocean in Perspective / 2

The Word Oceanography / 4
Emergence of the Science of Oceanography / 5
Chemistry and the Sea / 8
Physics and the Sea / 9
Biology and the Sea / 10
Geological Oceanography / 13
Postscript / 16

TWC

The Origin of the Earth, Ocean, and Life / 18

The Origin of the Universe / 20
The Origin of the Sun / 21
The Origin of the Planets / 21
The Origin of the Ocean and Atmosphere / 22
The Origin of Life / 23

THREE

Obtaining Information about the Ocean Basins / 26

Research Ships / 28 Methods of Sampling Sediments / 30 Depth Recording / 30
Dredging / 31
Coring / 33
Properties of the Ocean Crust / 33
Heat Conduction / 33
Rock Magnetism / 34
Gravity Anomalies / 34
Seismic Profiling / 35

FOUR

Ocean Basins and Sediments / 36

What Is an Ocean Basin? / 38 Composition / 39 Density / 40 Isostacy / 40 Features of the Seafloor / 40 Oceanic Ridges / 40 Abyssal Plains / 42 Seamounts, Coral Reefs, and Island Chains / 44 Island Arcs and Trenches / 46 Characteristics of Ocean Sediments / 47 Particle Size / 47 Density and Shape / 47 Color / 48 Mineral Composition / 48 Thickness of Sediments and Rate of Deposition / 48 Classification of Ocean Sediments / 48 Pelagic Sediments / 49 Biogenic Sediments / 49 Pelagic Clay / 50

Authigenic Sediments / 50
Volcanic Deposits / 50
Terrigenous Sediments / 51
Muds / 51
Turbidites / 51
Glacial Deposits / 51
Cosmogenic Sediments / 52
Distribution of Marine Sediments / 52

FIVE

Plate Tectonics / 54

Continental Drift: The First Approach / 56
Rock Magnetism / 57
Seafloor Spreading: The Data Converge / 59
Plate Tectonics: A Unifying Concept / 61
The Driving Force / 65
Summary of Evidence / 65
Earthquake Locations / 65
Magnetic Bands / 65
Sediment Age and Thickness / 65
Continental Margin Configuration / 65
Bedrock Age / 65
Heat Flow / 65
Lithologic Correlation / 65
Terrestrial Fossil Correlation / 66

SIX

Margins of the Continents / 68

Classification of Margins / 70
Continental Shelves / 73
Glaciation / 75
Sea-Level Changes / 78
Waves and Currents / 78
Sedimentation / 78
Carbonate Deposits / 79
Faulting and Volcanism / 79
Continental Slopes / 80
Submarine Canyons / 81
Continental Rises / 83

SEVEN

The Chemical Properties of Water / 86

Properties of Water / 88
Properties of Seawater / 89
Origin of Salinity / 90
Determination of Salinity / 91
Seawater Sampling Methods / 96
Minor Constituents / 97
Dissolved Gases / 98
Oxygen / 98
Carbon Dioxide / 99

EIGHT

The Physical Properties of Seawater / 102

NINE

Climate and the Ocean / 122

The Nature of Solar Energy / 127
The Heat Budget / 127
The Role of Water in Weather / 129
The Coriolis Effect / 132
General Circulation of the Atmosphere / 134
Weather / 140
Tropical Cyclones / 143
Storm Surges / 144
Waterspouts / 147
Reciprocal Influences of Atmosphere and the Ocean / 148
The Future / 148

Ocean Circulation / 150

Surface Circulation / 152

Some Major Ocean Currents / 154

The North Atlantic / 154

The North Pacific / 155

Flow Rate / 156

The Boundary Currents / 156

Western Boundary Currents / 156

Eastern Boundary Currents / 157

Equatorial Currents / 157

Forces Causing the Surface Currents / 157

Subsurface Currents or Undercurrents / 161

Other Surface-Circulation Phenomena / 161

Convergence and Divergence / 161

Upwelling / 161

El Niño / 162

The Sargasso Sea / 164

Coastal Currents / 164

Instruments for Measuring Current / 168

The Gulf Stream Revisited / 172

Energy from Ocean Currents / 173

Oceanic Circulation: The Deep Currents / 175

Temperature-Salinity Diagram / 176

Water Age / 178

Atlantic Ocean / 179

Pacific Ocean / 181

Indian Ocean / 181

Marginal Seas / 182

ELEVEN

Waves / 184

Types of Waves / 188

Wind Waves / 189

Swell / 191

Shallow-Water Waves / 194

Breaking Waves / 194

Surfing and Rip Currents / 195

Refraction, Diffraction, and Reflection / 198

Problem Waves / 198

Seismic Sea Waves / 198

Rogue Waves / 200

Internal Waves / 203

Wakes / 205

Seiches / 206

Energy from Waves / 207

Tides / 208

Periodicities / 210

Tide-Generating Forces / 212

Solar and Lunar Tides / 213

The Tides According to Newton / 215

Dynamic Tides / 217

Tidal Range / 219

Tidal Currents / 221

Whirlpools / 222

Tidal Bore / 226

Tidal Prediction / 228

Energy from Tides / 229

THIRTEEN

Coastal Processes and Estuaries / 232

Coasts and Coastal Processes / 234

Coastal Rock and Sand / 235

Changes in Sea Level / 236

Energy Acting on Coasts / 237

Large-Scale Earth Movements / 242

Human Activities / 242

Dams / 242

Land Reclamation / 243

Dredging / 243

Development of Dune Areas / 244

Erosion Control Structures / 244

Classification of Coasts / 247

Coasts Shaped by Nonmarine Processes / 249

Coasts Shaped by Marine Processes or Marine

Organisms / 252

Coasts of the United States / 258

Descriptions / 258

Active Processes / 259

New England / 259

Mid-Atlantic Shelf / 262

Florida / 262

Gulf Coast / 264

Southern California / 265

Oregon and Washington / 267

Minor Beach Features / 267

Estuaries / 267

Classification / 267

Estuarine Circulation / 269

Estuarine Currents / 270

Types of Estuaries / 270

Origin and Fate / 270

FOURTEEN

Life in the Sea: Bacteria, Protists, Plants, and Invertebrates / 272

Classification and Terminology / 275

Classification / 275

Bacteria: The Kingdom Monera / 277

Single-Celled Organisms: The Kingdom

Protista / 279

Diatoms / 279

Dinoflagellates / 280

Microflagellates / 282

Forams and Radiolarians / 283

Multicellular Plants: The Kingdoms Protista and

Plantae / 283

Seaweeds / 283

Other Plants / 286

Invertebrate Animals: The Kingdom

Animalia / 287

Sponges / 287

Cnidaria / 288

Echinoderms / 291

Mollusca / 293

Snails, Sea Slugs, and Chitons / 293

Clams and Their Relatives / 295

Octopuses and Squids / 297

Annelid Worms / 299

Crustaceans / 301

Crustacean Anatomy and Life Cycle / 301

Shrimps, Crabs, and Anormurians: The

Decapod Crustaceans / 303

Krill, Copepods, Isopods, Amphipods,

Barnacles: The Nondecapods / 304

Other Marine Arthropods / 308

The Invertebrate Chordates / 309

The Rest of the Invertebrates / 310

FIFTEEN

Life in the Sea: Vertebrates / 312

Sharks and Their Relatives / 315

Fishes / 318

Adaptations / 319

Fish of Commercial Significance / 322

Herrings and Their Relatives / 322

The Cod Fishes / 323

Halibuts / 324

Albacores and Tunas / 324

Reptiles / 326

Birds / 328

Seabird Feeding / 328

Penguins / 329

Albatrosses / 330

Pelicans / 331

Mammals / 332

Pinnipeds / 333

Sea Cows / 334

Cetaceans / 335

Marine Mammals and People / 339

Other Marine Vertebrates / 340

SIXTEEN

The Distribution and Abundance of Life in the Sea / 342

Seawater Properties: Their Effects on Marine

Life / 345

Density and Viscosity / 345

Salinity / 346

Temperature / 346

Dissolved Gases / 347

Light / 348

Pressure / 349

Depth / 350

Plant Productivity and Food-Chain

Dynamics / 350

Photosynthesis / 350

Primary Productivity / 352

Measuring Productivity / 353

The Distribution of Productivity / 354

Nutrient Cycles / 356

The Nitrogen Cycle / 356

The Phosphorus Cycle / 358

The Loss of Energy in Food Chains / 359

Light, Nutrients, Upwelling, Symbiosis: Life in

Four Marine Systems / 360

The North Atlantic Ocean / 361

The Sargasso Sea / 363

The Antarctic Ocean / 363

Coral Reefs / 364

Depth, Darkness, Shortage of Food: Life in Deep Water / 366

The Delecte Declar /

The Pelagic Realm / 367

The Deep-Sea Floor / 372

Hydrothermal Vents / 373

Salinity Fluctuations: Life in Estuaries / 375

Interactions Among Organisms: Life Along the

Shore / 376

Deep-Ocean Zones / 380 Broad Geographic Patterns: The Legacy of Prehistoric Events / 380 Summary / 382 Life in the Sea: A Nonscientific Perspective / 382

SEVENTEEN

Polar Oceanography / 384

Magnetism / 386
The Arctic Ocean / 387
The Antarctic / 387
The Heat Budget / 389
Life in the Polar Regions / 390
Ice in the Sea / 392
Sea Ice / 392
Icebergs / 393
Ice Islands / 398
Putting Ice to Use / 400
Survival in the Sea / 400
Drowning / 400
Hypothermia / 401
Thirst, Hunger, and Exposure / 401

EIGHTEEN

Marine Resources and Ocean Technology / 402

Shipping / 404 Submergence / 406 Scuba Gear and Underwater Habitats / 406 Deep-Sea Submersible Vehicles / 407 Mineral Exploitation / 413 Hydrocarbons / 413 Manganese Nodules / 415 Phosphate / 416 Gold / 417 Diamonds / 417 Salt / 417 Importance of Undersea Mining / 418 Desalination / 418 Energy from the Sea / 420 Tides / 420 Waves / 420 Thermal Differences / 421 Fisheries / 421 Exclusive Economic Zone / 426

Endangered Living Resources / 428
Overfishing / 428
Invertebrates / 429
Reptiles / 429
Birds / 429
Mammals / 429
Aquaculture / 431
Marine Natural Products / 432
Sunken Treasure / 433
Marine Recreation / 433
Overview / 434

NINETEEN

Ocean Pollution and Management / 436

What Is Pollution? / 441 The Sea as a Dump / 441 Sewage / 441 Heavy Metals / 443 Synthetic Organic Compounds / 445 Oil / 447 Radioactivity / 452 Heat / 454 Solid Refuse / 454 The Carbon Dioxide Problem / 455 Coastal Land Use / 458 Landfill / 458 Coastal Development / 459 Ocean Management / 462 History / 462 U.N. Law of the Sea / 463 Coastal Zone Management / 465

Appendixes

I	Latitude and Longitude / 467
II	Time and the Date Line / 468
III	Scientific Notation / 469
IV	Constants and Equations / 470
V	Supplementary Topics to Chapter 8 / 471
VI	The Coriolis Effect / 472
VII	Geologic Time Scale / 473
VIII	The U.S. Coastline / 474
IX	A Classification of Living Organisms / 483

Glossary / 486

Index / 504

Oceanography An Introduction

The sea does not reward those who are too anxious, too greedy, or too impatient. To dig for treasures shows not only impatience and greed, but lack of faith. Patience, patience, patience, is what the sea teaches. Patience and faith. One should lie empty, open, choiceless as a beach—waiting for a gift from the sea.

Anne Morrow Lindbergh

The Ocean in Perspective

- I. The word Oceanography
- II. Emergence of the Science of Oceanography
- III. Chemistry and the Sea
- IV. Physics and the Sea
- V. Biology and the Sea
- VI. Geological Oceanography
- VII. Postscript

You hear it long before you see it—a muffled roar, thunder in the distance. This is no ominous rumbling of some passing storm. It is the compelling, rhythmic sound of the world's ocean, its waters surging against the land.

You round a bend in the road or step through a break in the coastal forest or near the edge of a cliff, and you see it for the first time. Before you is an expanse of water so dynamic, so vast, so primal, that the turmoil of cities is forgotten. At that moment, your world expands. That moment, in Anne Morrow Lindbergh's phrase, is a gift from the sea.

Some people who experience that moment go on to become oceanographers of one sort or another. They may turn to chemical oceanography—the study of the distribution of chemical substances in the ocean water and the reactions that take place between them—or to physical oceanography—the study of the transmission of light, sound, and kinetic energy through the ocean, the distribution of temperatures, and air-sea interactions. They may become specialists in biological oceanography—the study of interactions of marine organisms with one another and with their environment. Or these people may become interested in geological oceanography—the study of the origin and physical characteristics of the ocean basins and the processes that have shaped them.

Whatever their special interest, oceanographers have all glimpsed a magnificent natural force, and they are all in their own ways responding to its challenge. Oceanography is more than a profession; it is a special way of viewing one of the great features of nature.

THE WORD OCEANOGRAPHY

Sir John Murray commented in his book *The Oceans*, published in 1910, on the word *oceanography*:

The term *Thalassography* has been used, largely in the United States, to express the science which treats of the ocean. The term *Oceanography* is, however, likely to prevail. The Greeks appear to have used the word *Thalassa* almost exclusively for the Mediterranean, whereas the almost mythical "oceanus" of the ancients corresponds to the ocean basins of the modern geographer. In recent times I believe the word *Oceanography* was introduced by myself about 1880, but I find from Murray's English Dictionary that the word *océanographie* was used in French in 1584, but did not then survive.

The German word *Ozeanographie*, now largely replaced by *Meereskunde*, was used somewhat earlier than the English version.

1.1 Japanese woodcut prints (by Masanobu Kano) showing early nori cultivation techniques: preparing and planting brush as a foundation for Porphyra spores (Kode, 1877).

The suffix *graphy* suggests drawing, describing, or reporting, as in *biography* and *geography*. The suffix *logy* refers to a science or a branch of knowledge. Surely the study of the ocean has progressed beyond a pure description, and *oceanology* would be a more accurate term than *oceanography*. Still, *oceanography* retains its currency, and we shall use it throughout this book.

The term hydrography is sometimes used incorrectly as a synonym for oceanography. Hydrography deals primarily with the charting of coastlines, bottom topography, currents, and tides for practical use in ocean navigation. Oceanography is a more comprehensive discipline that uses chemical, physical, biological, and geological principles in its study of the ocean at large.

EMERGENCE OF THE SCIENCE OF OCEANOGRAPHY

Artists, poets, philosophers, admirals, and merchants have long had a passionate relationship with the ocean, and people of all ranks have harvested fish, shellfish, and seaweed from the sea for thousands of years (Figure 1.1). Seafarers have sailed the world in search of fortune and far horizons. Since the time of Homer,

Plato, and Aristotle, and probably long before, poets and philosophers have reflected on the sea. Indeed, in Plato's model of the world system, which comprised earth, air, fire, and water, the water was the ocean (Figure 1.2). Aristotle devised a system for classifying living creatures and perceived the connection between marine fossils and living organisms.

However, oceanography developed late as a science. The study of the ocean began in earnest with the voyage of HMS Challenger (Figure 1.3). In December 1872, under the direction of Wyville Thomson of Britain, the Challenger embarked on the first major oceanographic expedition in history—an expedition that lasted almost three and a half years. During that time, the Challenger covered 68,890 nautical miles (Figure 1.4). (A nautical mile equals one minute of latitude, or 1/21,600, of a great circle of the earth; this is equal to 1,852 m [6,076.1 ft].) It was the first steamship ever to reach the Antarctic ice barrier and the first to cross the Antarctic Circle. (www.g. — Capt. Cooke Wash

The wealth of information gathered during that expedition prompted J. Y. Buchanan, the chemist on the expedition, to comment:

The history of the *Challenger* expedition is well known to all students of oceanography, which, as a special science, dates its birth from