Michael Butler

Cliff Jones

Alexander Romanovsky
Elena Troubitsyna (Eds.)

State-oil-the-Art
Survey

Rigorous Development
of Complex Fault-Tolerant

Systems

N~
LN
v
vQ)
)
-
-

@ Springer

o
2042 -0

S |z

Michael Butler Cliff Jones
Alexander Romanovsky ElenaTroubitsyna (Eds.)

Rigorous Development
of Complex Fault-Tolerant
Systems

/ . \
5‘; ', \
Y iz)

QLRI R /
\ y,

-

& springer WM

2007000004

Volume Editors

Michael Butler

University of Southampton

School of Electronics and Computer Science
Highfield, Southampton SO17 1BJ, UK
E-mail: mjb@ecs.soton.ac.uk

Cliff Jones

Alexander Romanovsky

Newcastle University

School of Computing Science

Newcastle upon Tyne, NE1 7RU, UK

E-mail: {cliff.jones,alexander.romanovsky } @ncl.ac.uk

Elena Troubitsyna

Abo Akademi University

Department of Computer Science
Lemminkiisenkatu 14 A, 20520 Turku, Finland
E-mail: etroubit@abo.fi

Library of Congress Control Number: 2006936100

CR Subject Classification (1998): C.2.4,D.1.3,D.2,D.4.5,F2.1-2, D.3, F3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-48265-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48265-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11916246 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4157

Foreword

Software is the fuel of the information society. Many of our systems and applications
are today controlled and/or developed in software. It is also a well known fact that
many software systems have reached a level of complication, mainly because of their
size, heterogeneity and distribution (and hopefully not through bad programming),
that results in faults appearing which cannot be traced back easily to the code. Some
of these “faults” could also be unexpected program behaviour that appears as a result
of interactions between the different parts of the program; this is commonly known as
complexity. The problem is that sometimes is not easy to say whether a fault is
traceable to the code or whether it is due to emergent unexpected behaviour from the
complex software system. Testing the code for possible faults is also very costly.

New methods, approaches, tools and techniques are needed to cope with the
increasing complexity in software systems; amongst them, fault tolerance techniques
and formal methods, supported by the corresponding tools, are promising solutions.
This is precisely the subject of this book, which is very much welcome.

The pervasiveness of software in today’s information society makes it of paramount
importance, and the main objective of the Software Technologies unit of the European
Commission is to support the European software and services industry so that quality
software and services are developed to compete in global markets. To help in reaching
this objective, it is obvious that we need to maintain and contribute to the excellence in
research from universities and research organizations in this specific area.

The volume has been prepared by the partners involved in the FP6 IST-511599
RODIN project (partly funded by the European Commission), “Rigorous Open
Development Environment for Complex Systems”. The book brings together papers
focusing on the application of rigorous design techniques to the development of fault-
tolerant, software-based systems.

In RODIN complexity is mastered by design techniques (specifically formal
methods) that support clear thinking and rigorous validation and verification. Coping
with complexity also requires architectures that are tolerant of faults and
unpredictable changes in the environment; this side is addressed by fault tolerant
design techniques. The sources of complexity under study in RODIN are those
caused by the environment in which the software is to operate and from the poorly
conceived architectural structure.

Who should read this book? Basically, the formal methods and fault tolerance
communities. The formal methods people will learn more about (and probably be
fired up by) the challenging issues in design for fault tolerance, while researchers on
fault tolerance will better understand how formal methods can improve way in which
their techniques are developed and applied.

The European Commission, through its successive framework programs, has
supported work on methods and techniques to master system complexity and achieve
dependable and trustworthy systems. Recently, specifically under the 6™ Framework
Programme, it has called, amongst other topics, for “Principles, methodologies and
tools for design, management and simulation of complex software systems” and

VI Foreword

“Foundational and applied research to enable the creation of software systems with
properties such as self-adaptability, flexibility, robustness, dependability and
evolvability”.

It is clear that these issues are, by no means, fully resolved. Software systems are
increasingly complex, and we will need increased efforts in research just to keep up
with the pace of development (based on the reflection by the Red Queen in Lewis
Carroll's Through the Looking Glass, “in this place it takes all the running you can do,
to keep in the same place”). It is time, now, for renewed efforts; this book is a pointer
in that direction.

August 2006 José-Luis Fernandez-Villacafias Martin

Disclaimer: The views expressed in this foreword are those of the author only and should not be
construed to reflect or represent the position of the European Commission.

Preface

There was, for several decades, a split between researchers who aimed to create
perfect programs by using formal methods and those who pioneered techniques
for fault tolerance. Of course, the approaches actually complement each other.
Fault tolerance generally copes with failures of physical components (and might
in specific cases be able to guard against some sorts of design mistakes). Formal
reasoning is not just about proving (under assumptions) that a given program
will function perfectly; the most productive use of formalism is early on in the
design process to help clean up the architecture of a system. As systems have
become larger and more intimately linked both to the physical world and to
human users, the design task has become far more complex. One of the goals of
design must always be to reduce unnecessary complexity in resulting systems.

The editors of this book are proud to be involved in an EU (FP-6) project
which specifically brings together researchers from the fault tolerance and formal
methods communities. We are aware that through abstraction, refinement and
proof, formal methods provide design techniques that support clear thinking as
well as rigorous validation and verification. Furthermore, good tool support is
essential to support the industrial application of these design techniques.

In 2005 the RODIN (Rigorous Open Development Environment for Complex
Systems) project organised a workshop on Rigorous Engineering of Fault Tol-
erant Systems. REFT 2005' was held in conjunction with the Formal Methods
2005 conference at Newcastle University. The aim of this workshop was to bring
together researchers who were interested in the application of rigorous design
techniques to the development of fault tolerant software based systems.

Such was the success of that event that the organisers decided to prepare a book
on the same combination of topics by inviting the authors of the best workshop pa-
pers to expand their work and a number of well-established researchers working in
the area to write invited chapters. This book contains the refereed and revised pa-
pers that came in response. T'welve of the papers are reworked from the workshop;
nine of them are totally new. We have also included two provocatively different po-
sition statements from Abrial and Amey on the role of programming languages.

The organisers would like to thank the reviewers (some of whom work on
RODIN, others are from outside the project): Jean-Raymond Abrial, Elisabeth
Ball, Fernando Castor Filho, Patrice Chalin, Ernie Cohen, Joey Coleman, Neil
Evans, Massimo Felici, Stefania Gnesi, Stefan Hallerstede, Michael Hansen, Ian
Hayes, Alexei Iliasov, Dubravka Ili¢, Maciej Koutny, Linas Laibinis, Annabelle
Meclver, Qaisar Ahmad Malik, César Mufioz, Simin Nadjm-Tehrani, Apostolos
Niaouris, Ian Oliver, Patrizio Pelliccione, Mike Poppleton, Shamim Ripon, Colin
Snook and Divakar Yadav.

! The proceedings are at http://www.cs.ncl.ac.uk/research/pubs/trs/papers/915.pdf

VIII Preface

We should particularly like to thank José-Luis Ferdndez-Villacanas Martin
who both gave his time to update the meeting on IST plans and has kindly
contributed the Foreword to this volume; and Louise Talbot who has quietly
and efficiently handled the collation of this book.

Both in organising REFT 2005 and in publishing this edited book we are
aiming to build a network of researchers from the wider community to promote
integration of dependability and formal methods research. It is encouraging to
see that many of the papers address software based systems that impact peo-
ples’ everyday lives such as communications systems, mobile services, control
systems, medical devices and business transactions. We hope that you enjoy
reading this volume and encourage you to contribute to our aim of closer col-
laboration between dependability and formal methods research. We expect to
organise another event in London in July 2007: details will appear on the project
WWW site http://www.cs.ncl.ac.uk/research/projects/detail.php?id=219

August 2006 Michael Butler
Cliff Jones

Alexander Romanovsky

Elena Troubitsyna

Lecture Notes in Computer Science

For information about Vols. 1-4208

please contact your bookseller or Springer

Vol. 4313: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods. IX, 197 pages. 2006.

Vol. 4300: Y.Q. Shi (Ed.), Transactions on Data Hiding
and Multimedia Security 1. IX, 139 pages. 2006.

Vol. 4292: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part II. XXXII,
906 pages. 2006.

Vol. 4291: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part I. XXXI,
916 pages. 2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4283: Y.Q. Shi, B. Jeon (Eds.), Digital Watermark-
ing. XII, 474 pages. 2006.

Vol. 4281: K. Barkaoui, A. Cavalcanti, A. Cerone (Eds.),
Theoretical Aspects of Computing - ICTAC. XV, 371
pages. 2006.

Vol. 4280: A K. Datta, M. Gradinariu (Eds.), Stabiliza-
tion, Safety, and Security of Distributed Systems. X VII,
590 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4278: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part II. XLV, 1004 pages. 2006.

Vol. 4277: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part I. XLV, 1009 pages. 2006.

Vol. 4276: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part II. XXXII, 752 pages. 2006.

Vol. 4275: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part I. XXXI, 1115 pages. 2006.

Vol. 4273: LF. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.), The
Semantic Web - ISWC 2006. XXIV, 1001 pages. 2006.

Vol. 4272: P. Havinga, M. Lijding, N. Meratnia, M. Weg-
dam (Eds.), Smart Sensing and Context. XI, 267 pages.
2006.

Vol. 4271: F.V. Fomin (Ed.), Graph-Theoretic Concepts
in Computer Science. XIII, 358 pages. 2006.

Vol. 4270: H. Zha, Z. Pan, H. Thwaites, A.C. Addison,
M. Forte (Eds.), Interactive Technologies and Sociotech-
nical Systems. X VI, 547 pages. 2006.

Vol. 4269: R. State, S. van der Meer, D. O’Sullivan, T.
Pfeifer (Eds.), Large Scale Management of Distributed
Systems. XIII, 282 pages. 2006.

Vol. 4268: G. Parr, D. Malone, M. O Foghld (Eds.), Au-
tonomic Principles of IP Operations and Management.
XIII, 237 pages. 2006.

Vol. 4267: A. Helmy, B. Jennings, L. Murphy, T. Pfeifer
(Eds.), Autonomic Management of Mobile Multimedia
Services. XIII, 257 pages. 2006.

Vol. 4266: H. Yoshiura, K. Sakurai, K. Rannenberg, Y.
Murayama, S. Kawamura (Eds.), Advances in Informa-
tion and Computer Security. XIII, 438 pages. 2006.

Vol. 4265: L. Todorovski, N. Lavra¢, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006. (Sublibrary
LNAI).

Vol. 4264: J.L. Balcézar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning Theory. XIII, 393 pages. 2006.
(Sublibrary LNAI).

Vol. 4263: A. Levi, E. Savas, H. Yenigiin, S. Balcisoy,
Y. Saygin (Eds.), Computer and Information Sciences —
ISCIS 2006. XXIII, 1084 pages. 2006.

Vol. 4261: Y. Zhuang, S. Yang, Y. Rui, Q. He (Eds.),
Advances in Multimedia Information Processing - PCM
2006. XXII, 1040 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. Nguyen, R. Stowiriski (Eds.), Rough
Sets and Current Trends in Computing. XXII, 951 pages.
2006. (Sublibrary LNAI).

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4256: L. Feng, G. Wang, C. Zeng, R. Huang (Eds.),
Web Information Systems — WISE 2006 Workshops.
X1V, 320 pages. 2006.

Vol. 4255: K. Aberer, Z. Peng, E.A. Rundensteiner, Y.
Zhang, X. Li (Eds.), Web Information Systems — WISE
2006. XIV, 563 pages. 2006.

Vol. 4254: T. Grust, H. Hopfner, A. Illarramendi, S.
Jablonski, M. Mesiti, S. Miiller, P.-L. Patranjan, K.-
U. Sattler, M. Spiliopoulou (Eds.), Current Trends in
Database Technology — EDBT 2006. XXXI, 932 pages.
2006.

Vol. 4253: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part ITI. XXXII, 1301 pages. 2006. (Subli-
brary LNAI).

Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II. XXXIII, 1335 pages. 2006. (Subli-
brary LNAI).

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part1. LXVI, 1297 pages. 2006. (Sublibrary
LNAI).

Vol. 4249: L. Goubin, M. Matsui (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2006. XII,
462 pages. 2006.

Vol. 4248: S. Staab, V. Svitek (Eds.), Managing Knowl-
edge in a World of Networks. XIV, 400 pages. 2006.
(Sublibrary LNAI).

Vol. 4247: T.-D. Wang, X. Li, S.-H. Chen, X. Wang,
H. Abbass, H. Iba, G. Chen, X. Yao (Eds.), Simulated
Evolution and Learning. XXI, 940 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
XIII, 588 pages. 2006. (Sublibrary LNAI).

Vol. 4245: A. Kuba, L.G. Nyiil, K. Palagyi (Eds.), Dis-
crete Geometry for Computer Imagery. XIII, 688 pages.
2006.

Vol. 4244: S. Spaccapietra (Ed.), Journal on Data Se-
mantics VII. XI, 267 pages. 2006.

Vol. 4243: T. Yakhno, E.J. Neuhold (Eds.), Advances in
Information Systems. XIII, 420 pages. 2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4241: R.R. Beichel, M. Sonka (Eds.), Computer Vi-
sion Approaches to Medical Image Analysis. XI, 262
pages. 2006.

Vol. 4239: H.Y. Youn, M. Kim, H. Morikawa (Eds.),
Ubiquitous Computing Systems. X VI, 548 pages. 2006.

Vol. 4238: Y.-T. Kim, M. Takano (Eds.), Management of
Convergence Networks and Services. XVIII, 605 pages.
2006.

Vol. 4237: H. Leitold, E. Markatos (Eds.), Communica-
tions and Multimedia Security. XII, 253 pages. 2006.

Vol. 4236: L. Breveglieri, I. Koren, D. Naccache, J.-P.
Seifert (Eds.), Fault Diagnosis and Tolerance in Cryp-
tography. XIII, 253 pages. 2006.

Vol. 4234: 1. King, J. Wang, L. Chan, D. Wang (Eds.),
Neural Information Processing, Part III. XXII, 1227
pages. 2006.

Vol. 4233: 1. King, J. Wang, L. Chan, D. Wang (Eds.),
Neural Information Processing, Part II. XXII, 1203
pages. 2006.

Vol. 4232: 1. King, J. Wang, L. Chan, D. Wang (Eds.),
Neural Information Processing, Part 1. XLVI, 1153
pages. 2006.

Vol.4231:J. F.Roddick, R. Benjamins, S. Si-Said Cherfi,
R. Chiang, C. Claramunt, R. Elmasri, E. Grandi, H. Han,
M. Hepp, M. Hepp, M. Lytras, V.B. Misi¢, G. Poels,
L.-Y. Song, J. Trujillo, C. Vangenot (Eds.), Advances in
Conceptual Modeling - Theory and Practice. XXII, 456
pages. 2006.

Vol. 4230: C. Priami, A. Ing6lfsdéttir, B. Mishra, H.R.
Nielson (Eds.), Transactions on Computational Systems
Biology VIL. VII, 185 pages. 2006. (Sublibrary LNBI).

Vol. 4229: E. Najm, J.F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4228: D.E. Lightfoot, C.A. Szyperski (Eds.), Mod-
ular Programming Languages. X, 415 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. X VII,
721 pages. 2006.

Vol. 4226: R.T. Mittermeir (Ed.), Informatics Education
— The Bridge between Using and Understanding Com-
puters. XVII, 319 pages. 2006.

Vol. 4225: J.F. Martinez-Trinidad, J.A. Carrasco Ochoa,
J. Kittler (Eds.), Progress in Pattern Recognition, Image
Analysis and Applications. XIX, 995 pages. 2006.

Vol. 4224: E. Corchado, H. Yin, V. Botti, C. Fyfe (Eds.),
Intelligent Data Engineering and Automated Learning —
IDEAL 2006. XXVII, 1447 pages. 2006.

Vol. 4223: L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Eds.),
Fuzzy Systems and Knowledge Discovery. XXVIII,
1335 pages. 2006. (Sublibrary LNAI).

Vol. 4222: L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu (Eds.),
Advances in Natural Computation, Part II. XLII, 998
pages. 2006.

Vol. 4221: L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu
(Eds.), Advances in Natural Computation, Part 1. XLI,
992 pages. 2006.

Vol. 4220: C. Priami, G. Plotkin (Eds.), Transactions
on Computational Systems Biology VI. IX, 247 pages.
2006. (Sublibrary LNBI).

Vol. 4219: D. Zamboni, C. Kruegel (Eds.), Recent Ad-
vances in Intrusion Detection. XII, 331 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Vol. 4217: P. Cuenca, L. Orozco-Barbosa (Eds.), Per-
sonal Wireless Communications. XV, 532 pages. 2006.

Vol. 4216: M.R. Berthold, R. Glen, I. Fischer (Eds.),
Computational Life Sciences II. XIII, 269 pages. 2006.
(Sublibrary LNBI).

Vol. 4215: D.W. Embley, A. Olivé, S. Ram (Eds.), Con-
ceptual Modeling - ER 2006. XVI, 590 pages. 2006.

Vol. 4213: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Knowledge Discovery in Databases: PKDD
2006. XXII, 660 pages. 2006. (Sublibrary LNAI).

Vol. 4212: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006. XXIII, 851
pages. 2006. (Sublibrary LNAI).

Vol. 4211: P. Vogt, Y. Sugita, E. Tuci, C. Nehaniv (Eds.),
Symbol Grounding and Beyond. VIII, 237 pages. 2006.
(Sublibrary LNAI).

Vol. 4210: C. Priami (Ed.), Computational Methods
in Systems Biology. X, 323 pages. 2006. (Sublibrary
LNBI).

Vol. 4209: F. Crestani, P. Ferragina, M. Sanderson (Eds.),

String Processing and Information Retrieval. XIV, 367
pages. 2006.

Fpp] oo

Table of Contents

Train SYStemS . .« oo oo vttt 1
Jean-Raymond Abrial

Formalising Reconciliation in Partitionable Networks with Distributed

e i = = O g S L TR L1 37
Mikael Asplund, Simin Nadjm-Tehrani

The Fault-Tolerant Insulin Pump Therapy 59
Alfredo Capozucca, Nicolas Guelfi, Patrizio Pelliccione

Reasoning About Exception Flow at the Architectural Level............ 80
Fernando Castor Filho, Patrick Henrique da S. Brito,
Cecilia Mary F. Rubira

Are Practitioners Writing Contracts?, 100
Patrice Chalin

Determining the Specification of a Control System: An Illustrative
EXample . «ovomesismssnehis i s0iEs SHIES (MRS FRITPEEs wasws swcwms 114
Joey W. Coleman

Achieving Fault Tolerance by a Formally Validated Interaction Policy ... 133
Alessandro Fantechi, Stefania Gnesi, Laura Semint

F(I)MEA-Technique of Web Services Analysis and Dependability

Brsuring. : s: sscuc soems sms@s 1M Baees sEIme Smams s e ma 5o ams sors e 153
Anatoliy Gorbenko, Vyacheslav Kharchenko, Olga Tarasyuk,
Alexey Furmanov

On Specification and Verification of Location-Based Fault Tolerant

Mobile SyStemsottt 168
Alezxei Iliasov, Victor Khomenko, Maciej Koutny,
Alezander Romanovsky

Formal Development of Mechanisms for Tolerating Transient Faults 189
Dubravka Ilié, Elena Troubitsyna, Linas Laibinis, Colin Snook

Separating Concerns in Requirements Analysis: An Example 210
Daniel Jackson, Michael Jackson

X Table of Contents

Rigorous Fault Tolerance Using Aspects and Formal Methods
Shmuel Katz

Rigorous Development of Fault-Tolerant Agent Systems................
Linas Laibinis, Elena Troubitsyna, Alexei Iliasov,
Alezander Romanovsky

Formal Service-Oriented Development of Fault Tolerant

Communicating Systemso i
Linas Laibinis, Elena Troubitsyna, Sari Leppdnen, Johan Lilius,
Qaisar Ahmad Malik

Programming-Logic Analysis of Fault Tolerance: Expected Performance
of Self-stabilisation
Carroll Morgan, Annabelle K. Mclver

Formal Analysis of the Operational Concept for the Small Aircraft
Transportation System,
César Munoz, Victor Carreno, Gilles Dowek

Towards a Method for Rigorous Development of Generic Requirements
PABEITIS 5w s i v m 50 51555 25555 056 s nmn o oo s i o s oo 1 8 e o 1ei00 o 500 0 e e 1 5o o8 5
Colin Snook, Michael Poppleton, Ian Johnson

Rigorous Design of Fault-Tolerant Transactions for Replicated

Database Systems Using Event B
Divakar Yadav, Michael Butler

Engineering Reconfigurable Distributed Software Systems: Issues

Arising for Pervasive Computing
Apostolos Zarras, Manel Fredj, Nikolaos Georgantas, Valerie Issarny

Position Papers

Tools for Developing Large Systems (A Proposal)
Jean-Raymond Abrial

Why Programming Languages Still Matter
Peter Amey

Author Index

Train Systems

Jean-Raymond Abrial

ETH Zurich, Switzerland
jabrial@inf.ethz.ch

Abstract. This chapter presents the modelling of a software controller in charge
of managing the movements of trains on a track network. Some methodological
aspects of this development are emphasized: the preliminary informal presenta-
tion of the requirements, the careful definition of a refinement strategy, the at-
tention payed to the precise mathematical definition of the train network, and the
modelling of a complete system including the external environment. A special
attention is given to the prevention of errors and also (but to a less extend) to their
tolerance. The modelling notation which is used in this presentation is Event-B.

Keywords: Event-B, Requirement, Refinement, Failure, Correct Construction.

1 Informal Introduction

The purpose of this chapter! is to show the specification and construction of a complete
computerized system. The example we are interested in is called a frain system. By this,
we mean a system that is practically managed by a train agent, whose role is to control
the various trains crossing part of a certain track network situated under his supervision.
The computerized system we want to construct is supposed to help the train agent in
doing this task.

Before entering in the informal description of this system (followed by its formal
construction), it might be useful to explain the reason why we think it is important to
present such a case study in great details. There are at least four reasons which are the
following:

1. This example presents an interesting case of quite complex data structures (the
track network) whose mathematical properties have to be defined with great care:
we want to show that this is possible.

2. This example also shows a very interesting case where the reliability of the final
product is absolutely fundamental: several trains have to be able to safely cross the
network under the complete automatic guidance of the software product we want to
construct. For this reason, it will be important to study the bad incidents that could
happen and which we want to either completely avoid or safely manage. In this
chapter however, we are more concerned by fault prevention than fault tolerance.
We shall come back to this in the conclusion.

! This work has been partly supported by IST FP6 Rigorous Open Development Environment
for Complex Systems (RODIN, IST-511599) Project.

M. Butler et al. (Eds.): Fault-Tolerant Systems, LNCS 4157, pp. 1-36, 2006.

2 J.-R. Abrial

3. The software must take account of the external environment which is to be carefully
controlled. As a consequence, the formal modelling we propose here will contain
not only a model of the future software we want to construct but also a detailed
model of its environment. Our ultimate goal is to have the software working in
perfect synchronization with the external equipment, namely the track circuits, the
points, the signals, and also the train drivers. We want to prove that trains obeying
the signals, set by the software controller, and then (blindly) circulating on the
tracks whose points have been positioned, again by the software controller, that
these trains will do so in a completely safe manner.

4. Together with this study, the reader will be able to understand the kind of method-
ology we recommend. It should be described, we hope, in sufficiently general terms
so that he or she will be able to use this approach in similar examples.

We now proceed with the informal description of this train system together with its
informal (but very precise) definitions and requirements. We first define a typical track
network which we shall use as a running example throughout the chapter. We then study
the two main components of tracks, namely points and crossings. The important con-
cepts of blocks, routes, and signals are then presented together with their main proper-
ties. The central notions of route and block reservations are proposed. Safety conditions
are then studied. This is followed by the complementary train moving conditions allow-
ing several trains to be present in the network at the same time. We propose a number
of assumptions about the way trains behave. Finally we present possible failures that
could happen and the way such problems are solved.

The formal development (model construction) is preceded by the refinement strategy
we shall adopt in order to proceed in a gentle and structured manner. This is followed
by the formal model construction.

1.1 Methodological Conventions for the Informal Presentation

In the following sections, we give an informal description of this train system, and,
together with this description, we state what its main definitions and requirements are.
Such definitions and requirements will be inserted as separate labelled boxes in the
middle of an explanatory text. These boxes must all together clearly define what is to
be taken into account by people doing the formal development. The various definitions
and requirements will be labelled according to the following taxonomy:

ENV Environment MVT Movement

FUN Functional TRN Train

SAF Safety FLR Failure

Train Systems 3

— “Environment” definitions and requirements are concerned with the structure of the
track network and its components.

— “Functional” definitions and requirements are dealing with the main functions of
the system.

— “Safety” definitions and requirements define the properties ensuring that no classi-
cal accidents could happen.

— “Movement” definitions and requirements ensure that a large number of train may
cross the network at the same time.

— “Train” definitions and requirements define the implicit assumptions about the be-
havior of trains.

— “Failure” definitions and requirements finally define the various failure$ against
which the system is able to react without incidents.

Here is our first very general requirement:

The goal of the train system is to safely control trains moving
on a track network FUN-1

1.2 Network Associated with a Controlling Agent

Here is a typical track network that a train agent is able to control. In what follows, we
are going to use that network as a running example:

1.3 Special Components of a Network: Points and Crossings

Such a network contains a number of special components: these are the points and the
crossings as illustrated in the following figure (five points and one crossing).

P

PN

a point

/

a crossing

4 J.-R. Abrial

A point is a device allowing a track to split in two distinct directions. A crossing, as
its name indicates, is a device that makes two different tracks crossing each other. In
what follows we briefly describe points and crossings.

A train network may contain some special components: points ENV-1
and crossings

Point. A point special component can be in three different positions: left, right, or
unknown. This is indicated in the following figure.

B B B
A _/_ C . SO ;. A___ __ ¢
left right unknown

Note that the orientation from A to C is sometimes called the direct track whereas
the one from A to B is called the diverted track. In what follows however, we shall
continue to call them right and left respectively are there is no ambiguity in doing so.

In the first two cases above, the arrow in the figure shows the convention we shall
use to indicate the orientation of the point. Note that these arrows do not indicate the
direction followed by a train. For example, in the first case, it is said that a train coming
from A will turn left, a train coming from B will turn right, and a train coming from C
will probably have some troubles! Also note that a train encountering a point oriented
in an unknown direction (third case) might have some trouble too, even more if a point
suddenly changes position while a train is on it (we shall come to this in section 1.8).

The last case is the one that holds when the point is moving from left to right or
vice-versa. This is because this movement is supposed to take some time: it is per-
formed by means of a motor which is part of the point. When the point has reached
its final position (left or right) it is locked, whereas when it is moving it is unlocked.
Note however that in the coming development we shall not take this into account. In
other words, we shall suppose, as a simplification, that a point moves instantaneously
and that it is thus always locked. In other words, the unknown case is not treated, we
then just require in this development that a point may have only two positions: left or
right.

A point may have two positions: left or right ENV-2

Crossing. A crossing special component is completely static: it has no state as points
have. The way a crossing behaves is illustrated in the following figure: trains can go
from A to B and vice-versa, and from C to D and vice-versa.

Train Systems 5

1.4 The Concept of Block

The controlled network is statically divided into a fixed number of named blocks as
indicated in the following figure where we have 14 blocks named by single letters from
A toN:

A track network is made of a number of fixed blocks ENV-3

Each block may contain at most one special component (points or crossings).

A special component (points or crossings) is always attached
to a given block. And a block contains at most one special ENV-4
component

For example in our case, block C' does not contain any special component, whereas
block D contains one point, and block K contains a crossing. Each block is equipped
with a, so-called, track circuit which is able to detect the presence of a train on it. A
block can thus be in two distinct states: unoccupied (no train on it) or occupied (a train
is on it).

A block may be occupied or unoccupied by a train ENV-5

In the following figure, you can see that a train is occupying the two adjacent blocks
D and K (this is indicated in the figure by the fact that the blocks in question are
emphasized).

