" Advanced techniques
- for microprocessor
- systems




ADVANCED TECHNIQUES FOR MICROPROCESSOR SYSTEMS



Published by Peter Peregrinus Ltd., Stevenage, UK, and New York

ISBN: O 906048 31 1

This publication is copyright under the Berne Convention and the International Copyright Conven-
tion. All rights reserved. Apart from any copying under the U.K. Copyright Act 1956, part 1
section 7, whereby a single copy of an article may be supplied under certain conditions, for the
purposes of research or private study, by a library of a class prescribed by the U.K. Board of
Trade Regulations (Statutory Instruments, 1957 No. 868), no part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means without the
prior permission of the copyright owners. Permission is, however, not required to copy abstracts
of papers or articles on condition that a full reference to the source is shown.

Multiple copying of the contents of the publication without permission is always illegal.
Printed in Great Britain by A. Wheaton & Co. Ltd., Exeter

(© 1980 Peter Peregrinus Ltd



CONTRIBUTORS

D. ASPINALL, University of Manchester Institute of Science and Technology, UK
A.A. ALLISON, Consultant, Los Altos Hills, California, uUsSa

B.A CARRE, University of Southampton, UK

A.J.T. COLIN, University of Strathclyde, UK

A.H. CRIBBENS, British Rail Research, UK

E.L. DAGLESS, University of Manchester Institute of Science and Technology, UK
M. ESCUDER, Hewlett-Packard Ltd., South Queensferry, UK

J. GALLACHER, Praxis Instruments B.V., Leiden, The Netherlands

T.J. GILPIN, Department of Industry, UK

F.K. HANNA, University of Kent, UK

C.A.R. HOARE, University of Oxford, UK

A. HOPPER, University of Cambridge, UK

JANE W. HUGHES, University of Manchester Institute of Science and Technology, UK
A.D. MILNE, Wolfsand Microelectronics Institute, University of Edinburgh, UK
H.J. MITCHELL, CAP MICROSOFT LTD., UK

D.R. NOAKS, University of Birmingham, UK

GILL RINGLAND, MODCOMP, UK



ADVANCED TECHNIQUES FOR MICROPROCESSOR SYSTEMS

Edited by F.K. HANNA

PETER PEREGRINUS LTD.



PREFACE

This book consists of a collection of essays
on various aspects of microprocessor systems.
The essays are based on themes addressed at
an IEE Vacation School at Birmingham
University in 1980.

The School was held under the aegis of PGCé6,

the Microprocessor Applications group of the

IEE. It was organised and brought into being
by the following individuals:

D. ASPINALL (UMIST)

T.A. COX (STL)

D. DACK (Hewlett Packard Ltd.)

E.L. DAGLESS (UMIST)

J. GALLACHER (Praxis Ltd.)

T.D. HILLS (Peter Peregrinus Ltd.)

D. NOAKES (Birmingham University)
J.P. STUART (Warren Springs Laboratory)

whose contribution to this task it is a
pleasure to acknowledge.

F.K. Hanna
University of Kent



CONTENTS

Preface

Introduction

SECTION I : General considerations

Product life cycle
D. Aspinall

Software engineering
Gill Ringland

Testing and maintenance
J. Gallacher
SECTION II 5 Devices, subsystems and standards

A survey of present and future device technologies
A.D. Milne

Large scale integrated support circuits for microprocessors
A.A. Allison

Review of IEEE Computer Society Microprocessor Standards Committee activities
A.A. Allison

Hardware standards
M. Escuder

Principles and operation of bit-slice computers
D.R. Noaks

The application of microprogrammed hardware
D.R. Noaks

Diagnostic aids
T.J. Gilpin

SECTION III :Distributed and multiprocessor systems

Introduction to distributed processing
E.L. Dagless

Interconnected taxonomies
E.L. Dagless

The Cambridge Ring — a local network
A. Hopper

Resilient microcomputer systems
A.H. Cribbens

SECTION IV : Theory and techniques in programming

Pascal — data
Jane W. Hughes

Pascal — program and control structures
Jane W. Hughes

Abstraction in prrqramming — an aspect of high-level languages
A.J.T. Colin

MicroAde — a universal host development system
H.J. Mitchell

Synchronisation of parallel processes
C.A.R. Hoare

Software validation — Part I : Control flow and data flow analysis
B.A. Carré

Software validation — Part II : Semantic analysis
B.A. Carré

Index

10

16

21

22

30

34

38

45

48

52

57

58

62

67

72

77

78

84

93

96

108

112

127



INTRODUCTTION

MICROPROCESSOR ENGINEERING

F.K. Hanna

University of Kent, UK

The microprocessor emerged, in the early
1970's, in what perhaps seems in retrospect
to have been a surprisingly low key manner.
Since then however, and particularly over the
last few years, the development of micro-
processors (and of programmable electronic
devices in general) has proceeded at a
vertiginous rate. This in turn has, rather
rapidly, brought into being a major new
branch of engineering, concerned with the
design and production of microprocessor-
based systems. It is to aspects of this
emergent subject that the essays in this
book are addressed.

To a large extent, microprocessor engineering
is a synthesis between, on the one hand,
digital systems engineering and, on the other,
computer science. The subject therefore spans
quite a broad extent, and indeed it is inter-
esting to try compiling a checklist of topics
with which the well qualified practitioner in
this field might be familiar. Such a list
includes: -

Set Theory

Boolean algebra

Automata theory

Electronics

I.C. technology

Digital systems design
Asynchronous systems

Design of testable systems
Testing LSI chips
Contemporary CPU chips
Contemporary support chips
Contemporary bit-slice chips
Bus structures
Microprogramming
Multiprocessor architectures
Requirements languages
Estimating techniques
Documentation practice
Structured programming techniques
Debugging techniques
Assembly language programming
The PL/- languages

BASIC

PASCAL (and soon ADA)
Interrupt-driven programming
Concurrent programming
Synchronisation techniques
Real-time programming
Macrogenerators

Compiler construction
Portability

Formal validation

and, not forgetting of course, an
appreciation of various diverse appli-
cation areas.

This set of topics (which could certainly be
extended) is dauntingly large. Very few
practitioners are likely to be expert in all
these fields. It is therefore of interest

to enquire to what extent useful "subsets"

of this list of topics can be identified, and
how "self-contained" these specialist subsets
could be.

Within the domain of large computer systems,
specialisation to a subset of these topics is
the accepted norm. Thus we find, for example,
"brogrammers’, "digital design engineers', "systems
engineers' etc.

On the other hand, within the domain of micro-
processor engineering the situation is less
clear cut. One can perceive two, opposing,
tendencies. The first, similar to the trend
on large machines, is towards a separation,
or compartmentalisation, of groups of disci-
plines and the emergence of specialists. The
other, however, in the contrary direction, is
a unifying influence, tending to create the
need for what might be termed the "micro-
processor polymath". We will in turn explore
the forces influencing each of these two
tendencies.

Like any computer, a microprocessor system
can be described at a number of fairly
distinct "levels", between which, in an ideal
case, there will be no interaction. Such a
hierarchy of levels might be:-

ELECTRONIC
(transmission lines, rise times, circuit
loading, etc.)
- Oscilloscope

LOGIC
(AND—gates, flip-flops, glitches, etc.)
- Logic Analyser

CPU ARCHITECTURE
(instruction sets, addressing structures,
programs , etc.)
- Microprocessor Analyser

HIGH LEVEL LANGUAGE
(data types, control types, scoping rules, etc.)
- Interactive Debugger

ALGORTTHM
(matrix inversion, z-transforms, hill-climbing)
-~ Numerical Analysis, etc.

This table shows, for each level of the hierarchy,
typical items of concern. It also shows the type of
"instrument" that might be used to monitor or debug
that level.

In effect, each successive level allows a
microprocessor system to be designed and
described in a successively more abstract
way. The higher the degree of craftsmanship
with which the lower layers of the system
have been implemented, the greater the extent
to which an individual will be able to work
at any given level purely in terms of the
abstractions available at that level. For
instance, when considering an AND gate at the
Logic level, it should make no difference as
to whether the underlying electronics is based

upon a CMOS or upon a bipolar technology.
Likewise, at the Algorithm level, the number



of iterations needed by a hill-climbing
algorithm in seeking a particular maximum
should be quite independent of whether it is
programmed in BASIC or in PASCAL.

It is due to abstraction, to the way that the
overall design task can be undertaken at
different levels, that computer systems
(which, viewed only at the lower levels,
would be unimaginably complex) can be des-
igned at all. In a word, abstraction
provides both the means and the motivation
for specialisation, and enables useful subsets
of the list of topics given above to be
identified and studied in isolation.
Abstraction, and the resulting compartmental-
isation of microprocessor expertise into a
number of independent areas, is thus very
advantageous.

Why then does one find in the domain of
microprocessor engineering the claim that to
successfully exploit microprocessors, it is
necessary to have a broad appreciation across
the whole hierarchy of levels of abstraction?
Is this just an historic accident, reflecting
perhaps the diverse disciplines from which
present day microprocessor designers have
been drawn, or is it the result of some more
fundamental influence?

The answer to this question may be gleaned by
considering the role of abstraction in
practical situations, and reflecting on the
cases where it is not a viable approach. We
will attempt a classification of these cases.
As we do so, we will note that in each
instance, in order for the problem to be
successfully solved or circumvented, the
designer will need expertise at more than just
one level in the hierarchy.

Abstractions break down

Abstractions represent idealisations: some-
times the realisation is less than perfect
and the abstraction breaks down. When this
happens it is necessary to be able to char-
acterise the departure from the theoretical
ideal: this will generally involve delving
down to the next level below. Then either
the underlying fault has to be repaired or
the domain of applicability of the abstraction
has to be restricted. For instance, at the
digital logic level, an integrated circuit
AND gate only realises the desired abstraction
provided the appropriate loading rules are
obeyed, and tolerances on power supplies,
ambient temperature etc, are satisfied. At
another level, floating-point arithmetic is
necessarily (on any finite machine) going to
be subject to overflow conditions. At yet
another level, compilers for high-level
languages may fail, perhaps by not generating
code which is compact enough to fit within
the memory space of a given microprocessor,
or not fast enough to meet real-time con-
straints imposed by the problem.

Abstractions cannot be proven not to break
down

This, whilst related to the previous case, is
more subtle. An abstraction may be unusable
because, although its realisation is believed
by its authors to be perfect in every respect,
it is not proveably so, from the point of view
of a third party. These circumstances often
arise with systems where human life would be
endangered by failure: good examples are
fly-by-wire aircraft controllers and passenger
railway signalling systems. It may for

[

instance be very difficult to prove (both
"formally" and "politically") that a particular
microprocessor integrated circuit corresponds
to its published "abstraction" (the instruct-
ion set of at least one widely used micro-
processor does not), or that a given high-
level language compiler conforms to its
specification.

In cases like this, a practical course is to
make use of available abstractions in
designing the system, but then to <mplement
it directly at a lower level.

Abstraction is missing

In some cases, suitable abstractions or the
tools for their realisation are not available
This may be simply because there is insuff-
icient demand for them, as in the case of
assembly languages for microprogramming
particular machines. In other cases it may
be because development has been bottom-up and
ad-hoc: for example, it is only comparatively
recently that a well defined concept of a
(standard) microprocessor back-plane has
emerged.

In most cases however, a lack of suitable
abstractions is a reflection of a lack of
suitable theoretical foundations. This is
particularly to be found at the high-level
languages level. Few languages as yet are
suitable for programming multi-processor
systems, or even for satisfactorily incor-
porating interrupt handling on a systematic
and well structured basis.

Abstractions cannot be Interfaced to

No useful computer system functions in
isolation: it must communicate with its
environment. This occurs as part of its
normal operation (for instance, exchanging
information with transducers in a process-
control environment) and it may additionally
occur during debugging and commissioning

by the designer. 1In either case it is
appropriate that this communication takes
place in terms of the abstractions in which
the system was designed. Unfortunately,
however, this is only possible in some cases.

Consider first communication between the
designer and the system. As indicated in
the table above, this is well catered for at
all the lower levels: oscilloscopes for
examining waveforms, logic analysers for
examining digital logic, microprocessor
analysers for examining the execution of
low-level programs, etc. At the level of
high level programming however it is
generally very poorly catered for:
hexadecimal dumps are still often the order
of the day. The only sigrificant exception
is in the facilities provided by the inter-
active high-level programming languages, for
instance APL and POP-2.

When considering communication between a
microprocessor system and other parts of its
environment, the designer has no choice but
to work at a level of abstraction which is
common to both. Often the highest such level
at which this is possible is digital logic
and machine code. Only rarely are higher
level mechanisms provided, such as for
example CAMAC standardised hardware and
software.



Alternative realisations of an Abstraction

An abstraction is only intended to capture

the very essence of a functional specification:
it states how an (abstract) object is to
behave, and not how this behaviour is actually
to be realised. However, entering into the
specification of any system are second-order
requirements (often only implicitly stated)
like cost, speed, reliability, etc. Each
particular realisation of an abstraction will
provide a different balance between these
secondary factors.

Generally, there is, at all levels in the
hierarchy, a wide range of possible realis-
ations of any particular abstraction. At the
electronic level, for instance, there are
countless ways of realising a one-bit memory
cell, whilst equally, at the top of the
hierarchy, an operation like matrix inversion
may be implemented by many different algor-
ithms.

One of the degrees of freedom a designer has
in choosing an implementation which, with
continuing advances in VLSI technology, is

now of considerable signficance, lies in the

‘ choice between an entirely hardware realis-
ation, a microprogrammed one, or an entirely
software one, or in a mixture of all three
approaches. A case which nicely illustrates
this choice is in implementations of floating-
point arithmetic operations, where all four
approaches are currently viable. An example
at another level is that a program for a given
high level language can be regarded as running
on an abstract, high level language machine.A

realisation of this abstract machine may be
interpreter or compiler based, or perhaps a
mixture. If interpretative, it can be inter-
preted by a program running at the machine
code level, or (as in the PASCAL Microengine
approach) directly at a microprogrammed level.

These then are the practical reasons why

the microprocessor engineer needs to be able
to choose at will the level or levels of
abstraction most appropriate for designing
and implementing a particular system. Looking
at this list of reasons, it is interesting to
note that most of them are not fundamental
reasons as to why design cannot always be
undertaken entirely in high level terms.
Rather, most simply reflect the present
immature state of development of programmable
electronic components and software tools:
these elements may be unreliable, unvalidated,
poorly interfaced, or sometimes just simply
unavailable. As time proceeds, we may hope
to see many of these limitations fade away.
Not all, however, will do so. It is evident
that as newer and more complex integrated
circuits are developed (associative memories,
distributed intelligence memories, mask-
configurable VLSI chips, etc) and as higher-
level algorithms are "encapsulated" in
integrated-circuit form (DDC adaptive
controllers, list-processing mechanisms,
communications protocol handlers, syntax
analysers, etc), and as "unconventional", non
Von Neumann architectures are explored (data
flow machines, associative pattern recognisers,
array processors, etc) so there will continue
to be a role for designers able to comprehend
and work with abstractions at all levels.

*

The essays of which this book is composed
address aspects of microprocessor engineering
at all levels of abstraction, and from many
different viewpoints. For convenience they
have been grouped under four major headings:

General considerations,

Devices, subsystems and standards,
Distributed and multiprocessor systems,
Theory and techniques in programming,

although of course this can only be a very
approximate classification.



e, 75 B SE BEPDFIG Ui 1H] : www. ertongbook. com



I

GENERAL CONSIDERATIONS

(z) Product Life Cycle
(i) Software Engineering
(217) Testing and Maintenance

This first group of essays places the design
of microprocessor-based systems in its full
context. The essays are especially valuable
in that they serve to make explicit some of
the intuition, background experience and
working assumptions upon which the expert
manager, engineer or programmer in this field
relies.

The essays need little introduction. The
first one traces the evolution of a micro-
processor based product through from its
inception (as an abstract human need),
through its realisation, to its eventual end,
and notes some of the many pitfalls on its
route.

The second essay, on software engineering,
identifies those aspects of experience gained
(the hard way) during three decades of
programming mainframe computers, which are
equally relevant in programming micro-
computers. Espectial attention is devoted to
methods of realistically estimating the man-
power resources needed for this latter task,
and of adequately documenting the resultant
product.

Testing and maintenance is the main theme
covered in the last essay of this group.
Experience is showing that maintenance of
microprocessor based systems poses exceptional
problems and that the need for maintenability
must be taken into account from the earliest
stages of the design process.

D. Aspinall
GZll Ringland
J. Gallacher



PRODUCT LIFE CYCLE

D, Aspinall

University of Manchester Institute of Science and Technology, U.K.

INTRODUCTION

The dictionary definition of life cycle is
"Series of forms of an organism between
successive occurrences of a given form'", For
the purpose of this lecture the organism is
the product based upon microelectronics
technology. The various forms of the product
include

. Human Need
. Knowledge and skills of microelectronics
engineering
Embryonic specification of product
. Detailed specification of product
. Abstract design information
Detailed design information
. Manufactured Product
. Inspected Product
. Commissioned Product
. Tested, Packaged, Documented Product
Used Product
Faulty or Damaged Product
Modified Product (New Human Need)

The abstract concept of a human need is
fertilised by contact with the skills of a
microelectronics engineer to produce the
embryonic specification of a product. The
human needs are all pervasive since the
technology may be applied to most situations
in which human beings communicate information
in the form of memories, ideas or skills to
one another or through electro-mechanical
artefacts during the manufacture of new
things.

Many embryos will be stillborn, due to an
early realisation of the economic factors or
that the technology is as yet unable to
satisfy the need in full.

Live embryos will pass to a formal detailed
specification of the product in a form which
states the exact need to be satisfied and
also permits the microelectronics engineer to
commence the phase which leads to the abstract
design information form, In this form the
engineer will represent the information
processing algorithms to realise the need,
These will be represented in a language

which is more suited to a description of the
human requirements rather than the detailed
implementation requirements.,

Before the product is in the detailed design
form, to enable manufacture, the engineer

must make some important decisions in choosing
the implementation strategy. We will presume
that the engineer has decided to implement

the algorithms by the interworking of a
microprocessor with the peripheral equipment
of the product, together with suitable
programs to be developed to run on the
microprocessor-memory pair.

Three separate design activities follow this
decision

1. Design the hardware of the product
2, Design the system's software
3. Design the product software

The system's software is the vital link
between the programmer of the product
software and the hardware upon which this
will run. The system software includes the
development facilities to enable the veri-
fication of the product software,.

Hardware design information for manufacture
will pass to the pre-production manufacturing
activity which will manufacture, inspect and
verify the hardware.

Eventually the software will pass through
design, manufacture, inspection and
verification until there is sufficient
confidence to bring the software and the
hardware together to complete the commission-
ing of the product.

At this stage in the cycle it is possible to
initiate a repetition of the manufacturing
activities to produce replicas of the
commissioned form which are, in turn, the
products to be shipped to customers. The
form which they take prior to shipment may
be described as the Tested, Packaged,
Documented Product. Thus there need to be
separate activities to establish the
appropriate product test procedures and to
establish the packaging which the market
expects and last, but by no means least, to
prepare extensive, succinct documentation to
market the product and to support its use,.

The used product form may well be the final
form of the product cycle. However, it is
likely that the product will occasionally
become damaged or faulty or indeed may be
modified to suit new human needs, If these
new needs are significant then the whole
cycle may begin again,

This life cycle is typical in many respects
to that of most products of human ingenuity.
The uniqueness arises from the all pervasive
nature of the application of microelectronics-
based products and also from the range of
options available for the translation from
abstract to detailed design. Furthermore,
the components of the product, hardware and
software, must separately pass through
several forms before they come together as a
product for shipment, For a healthy product
it is essential to obtain an accurate
specification and to exercise due care and
attention to the choice of options and the
management of the interworking of hardware
and software,

Specification of the Product

The specification of the product is the
crucial act of conception which must be
correct otherwise the product may need to be
aborted or may ultimately turn out to be



unwanted. There must be a nice judgement

of the human need, This may arise from an
inspired hunch which anticipates a need
which is not obvious but which will become
urgent when the means to satisfy it exists.
All inventors hope to be so lucky as to have
such a hunch. Most will have to settle for
a proper market assessment based on well
established needs.

Careful analysis of the need will lead to a
specification which acts as the formal
instruction to the design authority. The way
in which the specification is set out is
important since this vital document must be
clear and unambiguous to both the human with
the need and also to the human design
authority. The needy must be satisfied that
the end-product will be satisfactory, but
must also be able to understand and appreciate
its limitations. The language used in normal
human communication can be misused and result
in ambiguous documents, The same word or
phrase can convey a different meaning to
different individuals. Because of this it

is necessary to be extremely careful in the
preparation of the specification document,

It may be necessary to define a special
language for such documents,

The analysis must be carried out with the
knowledge of the capabilities of the
available technology. There is no point in
proceeding to the preparation of a specifi-
cation unless there is confidence in the
ability of the technology to satisfy the
need. Before the final target specification
is drawn up it is advisable to conduct a
preliminary design exercise to establish
both the technical and economic viability of
the project,

The target specification should be final and
should not be modified without a thorough
analysis involving both the needy and the
designer. It should be carved in stone and
signed in the blood of the needy and of the
design authority,

Unfortunately, it is not possible to insist
upon this ritual, Quite often the innovation
of the product will itself modify or expand
the need and will, in use, expose omissions
in the specification. 1In these cases the
target specification must allow for the
introduction of new features as the use of
the product demonstrates the need. It must
be realised that such modifications to the
specification will increase the cost of the
product and such costs must be assessed
before authority is granted to incorporate
the modifications into the specification.

A technology which includes programmable
compcnents, such as uncommitted logic

arrays and micro-computers, gives the
impression that it is very tractable and

that changes may be incorporated with ease,
Such an impression leads to the attitude

that the specification need not be complete
since any deficiencies will be tactically
patched over by programming during the

design activity and even during commissioning
and use., This attitude makes it difficult

to predict the time to complete the design
and commissioning of a product. It is not
possible to estimate the cost of these
activities and it is often the case that the
resultant lengthening of the design and
commissioning phases cause the project to run
out of money, or if it survives this hazard,
to arrive in the market place after the

market has been cornered by a competitor
with an inferior, lower cost product which
adequately satisfies the need.

Creative engineers may find the discipline
of working to a tight specification to be
inhibiting and irksome, They must learn

to bite the bullet and accept that it is
more important to create a product within
time scales and budgets which place it in
the market place at the right time and at
the right price than to create fancy
innovations., By all means be innovative,
but please only use the innovations which
enable the achievement of the immediate
objective and file, for future development
and use, theoretical and exciting innova-
tions which may have a profound effect

upon the ability to specify the next product.
Do not forget that you will only be in a
position to enjoy the next project if your
last product is successful and your firm is
still trading.

The correct attitudes during the preparation
and use of the specification are essential
for the health of the product.

Abstract Design

The design process should proceed by step-
wise refinement or so-called top-downdesign.
Practical engineers, with experience and
knowledge of the characteristics and
limitations of the components to be inter-
connected to fabricate the product, may find
this procedure to be cumbersome, They would
much prefer to synthesise the design bottom-—
up. For products below a certain level of
complexity it is possible to be successful
by following a bottom-up procedure. However,
there are limitations and dangers in the
bottom-up procedure for complex products.,

A product may be visualised as a set of
separate elements which are interconnected.
Each element is itself made up of inter-
connected components. By following the
bottom-up approach each element is designed

to achieve its function before its inter-
connection to other elements is designed to
the same level of detail. The design of all
the element interconnections may result in
changes to the internal design of the elements.
If this occurs it becomes difficult to manage
and verify the correct working of the total
product, The top-down approach forces the
design of the interconnection between elements
before the design of their internal functions.
This is a much safer strategy in complex
systems with many elements and many more
interconnections.

The success of a product depends upon the
quality of the design and implementation of
the interconnections between standard bought-
in components whether these be micro-electronic
functional units or programme statements. The
opposition can buy the same components. It

is up to the designer to interconnect them
better than the opposition. Therefore the
design strategy should ensure proper consid-
eration of the interconnections before the
detailed consideration of the working of the
elements to be interconnected.

The early stages of a top-down approach
permit the design to be created in an
implementation independent manner and allow
theoretical analysis of the design to verify
its operation., Each of these attributes is
important.



In an explosive technology, which is constant-
ly offering new components for the implementa-
tion of products, it is important to defer the
choice of components until the last possible
moment and also be in a position to exploit
new components in later production runs of the
product, The top-down approach permits these
new components to influence the lower levels
of the design without necessarily affecting
the upper levels,

Verification of the design at all stages is
important for obvious reasons. The problem
is heightened in digital microelectronics
because of the uncompromising nature of the
boolean variable, There is no such thing
as tolerance, The variable is either True
or False. If the design produces a product
in which one of the boolean variables is at
the wrong value in one of the states of the
product then the product is a heap of junk!
If the product is in a consumer durable and
several thousand have been shipped before it
is realised that a variable can have the
wrong value, then there is trouble, There
will be a need to recall and replace all
products shipped.

Thus it is essential to carry out exhaustive
verification of the design. Theoretical
verification of the total design is best
carried out at the higher levels, Stepwise
refinement makes it possible to verify the
individual elements and their interconnections.

Detailed Design

The abstract design will be represented in a
high level or pseudo-language which is
implementation independent. Certain assump-
tions will have been made about the character-
istics and performance of certain implementation
components, particularly those which translate
information between the external, often analogue,
regime ana the internal digital regime. Now
is the time to decide the implementation
strategy for the digital algorithm., In
general the whole spectrum of microelectronics
components is available, In practice it will
be obvious whether to choose a microprocessor,
rather than one of the lower level options,
The question as to which processor may be
difficult to answer. Before choosing a
processor which is new it is necessary to
establish the investment which must be made

in the development environment and in the
acquisition of the detailed knowledge of its
characteristics and performance.

Design of the programme in a high level
language may make the move to a new processor
less painful but there is still much scope

for development of such languages and their
translation software, At the present state of
knowledge it is advisable to stay with a
microprocessor with which you are familiar
rather than to move to one which seems to offer
marginally better facilities., The move to a
new microprocessor should be taken as a major
policy decision., The objective in the choice
of microprocessor should be to find one which
will satisfy the requirements of a given class
of products which embraces the range of
products to be manufactured, Having made the
choice, acquire all the knowledge and tools

to enable efficient use of the microprocessor
in the range of products to be developed,

This attitude takes away some of the fun but
the times are hard! Play time is over!

Having chosen the microprocessor the detailed
design must progress along three distinct

paths Hardware, System Software and Product,
or Application Software., The objective of the
Hardware/System Software design includes the
realisation of a computing machine which will
run the applications or product software, In
reaching this objective the designers do not
need to know the intricate detail of the
minutia of the applications programme unless
there are critical sections which can benefit
from hardware assistance, Such sections
should be identified at the outset before the
design of the computing machine begins. The
computing machine designers will have quite
enough to worry about in providing a special
purpose machine which contains sufficient
generality to enable the running of the
programmes, When this computing machine is
being used by the applications programmer to
develop the product software, the prime
requirement is for a reliable machine which
behaves as the programmer expects, Thus
there must be separate test and verification
procedures which confirm the performance of
the computing machine before the applications
programmer attempts to use it to develop the
product software, Separate test and verifi-
cation procedures will then be necessary to
prove and characterise the total product.

All designers need to bear the test procedures
in mind and make due provision, The tests
may not appear explicitly in the target
specification but they are implicit in all
specifications.

The design information passes through many
stages before the product is available for
test, The electronics industry has a well
established infrastructure and disciplines
to take a design through to a reliable
physical product, The drawing office,
workshop, quality assurance inspectorate,
goods inward test, product test departments,
all have a well established role with clear
responsibilities, A similar infrastructure
is needed to translate a software design
into a reliable product, The exact form of
this infrastructure is still to be found
and there seems to be some reluctance to
admit that it is necessary since, after all,
the programmes are so tractable and so easy
to replicate,

The development of large software projects
on main frame computers has demonstrated
the need for such an infrastructure and the
associated disciplines, though programmes
are tractable they tend to be complex and
apparently simple modifications can have
serious, unforeseen consequences if they are
introduced in an undisciplined marnner. The
microprocessor engineer can learn from the
experiences of those main frame programmers
who went before.

Commissioned Product

Eventually the commissioned product form will
exist. The computing machine will be prov-
iding all the facilities required and the
product software will have transformed it
into a product which meets the target
specification, One must now take stock of
the situation., Many tests should be
performed to fully characterise the product
and to check and check again its character-
istics against the target specification.
Meanwhile, the hardware design information
will be tidied to take account of all the
modifications introduced during commission-
ing and to make the design data more
amenable to the manufacture of a saleable
product.



The documentation to enable proper use and
maintenance of the hardware must be finalised
for publication. The software must similarly
be tidied and the documentation for the user
prepared. The after sales support strategy
needs to be finalised and the appropriate
actions taken. Before product manufacture

can begin it will be necessary to decide upon
the final product test procedures and take the
appropriate action., Tests of the commissioned
machine should continue.

The commissioned product form is not the end
of the life cycle but the end of the
beginning.

Conclusions

The life cycle of the product from conception
to birth of the commissioned product is that
which occupies the creative microelectronics
engineer, The infant product needs to be
nursed through its early ills and trained to
serve a proper role in society before it is
shipped as a tested, packaged, documented
product, This period, immediately after
birth, is as important as the gestation
period and demands skills, knowledge and
creativity of a high calibre. Though it may
not seem to be as exciting as the creation
of a product at the forefront of technology,
it offers scope for rich fulfillment and
must not be under-rated as a vital and reward-
ing activity. Establishment of a healthy
environment for this early period of the
product's life will provide a solid base to
support it after it has left the nest and
embarked upon its career in the outside
world, This support may repair its damaged
parts or may destroy it and replace it with

a replica depending upon the economics of the
situation, Modifications may be carried out,
but again it may be more cost effective to
destroy and replace with an improved product.

The end can come in many ways but it is hoped
that it comes after the product has success-
fully satisfied the needs of both its
producers and its users,



10

SCFTWARE ENGINEERING

Gill Ringland

Software Manager, Inmos Limited, Whitefriars,
Lewins Mead, Bristol 1. 1

Abstract

The paper takes the software engineering
concepts developed on large projects and
shows the extent of their applicability to
microprocessor implementations. The topics
of estimating and documentation are discussed
in some detail.

INTRODUCTION

Computers have been programmed now for over
30 years: to old hands, one of the dismaying
features of the microcomputer revolution is
that many of the same mistakes that were made
first in implementing mainframe systems, then
in implementing systems on minicomputers, are
being made with microcomputer systems. Does
this matter - there are many successful
installations running computer systems which
perform an adequate job day after day - why
can't microcomputer systems be implemented
the same way?

The most important reason is that computer
systems are used to a large extent by people
who have been trained, who have access to
expert advice and are in a 'work'
environment. The computer is known to be a
complex beast with needs for peculiar
commands at intervals (eg, // DD ¥).
Microcomputer systems, on the other hand,
will be used to run car engines, in
telephones and by small businesses like
estate agents. They will be used in
situations where, not only are no experts
handy should there be a malfunction, but the
immediate consequences to individuals of
component failure are much higher.
Microcomputer systems will be far more

noticeable if (when) they fail than computer
systems. So, programmers and system
designers must be prepared to provide proofs
of the quality of their work in the same way
that major organisations insist on quality
assurance for their software. But
programmers and designers of micro based
systems must go further. They must also
consider the whole system design and
implementation process with a view to
minimising problems to the end user.

1 Current address European Software Manager
MODCOMP

Molly Millars Lane
Wokingham

Berkshire

It is also true that, in the last few years
particularly, there have been significant
advances in understanding problems of
software development and how to avoid them.
The industry has realised that "clever"
software is not clever. It has looked at
where software effort goes in implementing
computer systems and found that development
is less that half of the activity: a quarter
is devoted to adding features left out of the
original design, and ten per cent to fixing
bugs, after the system has gone live. Since
there are clearly many practical problems in
fixing software after, for instance, it has
been installed in five million new phones,
again the emphasis must be on avoiding bugs
in microcomputer systems, in validating the
specifications of the system and in
constructing the software so that it is
robust .

To understand how to actually go about it,
consider the stages of a project:

- formulation of requirements and
specifications;

- system design;

- build (for software this is
programming verification and
validation or code and test).

Specification

There are three main approaches to
specification. The traditional approach is
informal: the system is specified in natural
language, often following a standard layout,
but with all the ambiguities and
misunderstandings present in informal
communication. The second can be called
'formatted specification' [Boehm (1)] and
consists of a programming language-like
description which can be checked for
consistency and completeness using a computer
system. The available tools have been
reviewed by Ramamoorthy (2) but the overhead
of running most of these tools is high and
they are, therefore, more appropriate for
large projects. Work on formal specification
languages has reached the stage where they
have been used on non-trivial applications
such as operating systems. The languages are
mathematical and allow for formal proof of
the system and verification of its
implementation. They have been used so far
on military systems and in research labs so
far: it looks as though their use will extend
more generally in the next few years.
Bibliographies are to be found in Wegner (3).

In the discussion on documentation and
estimating that follows the use of informal
specifications is assumed.

Design

System design is the step which requires the
conceptual leap from what is needed (to get
across the river), to how (bridge or dugout
canoe). Advances in software design
techniques have been in two areas: enabling a
designer to express the program flow
succintly, and to express and manipulate data
structures. Techniques for both have been
reviewed in Freeman and Wasserman (4). 1In
the subsequent discussion on documentation
and estimating, it will be assumed that an
adequate system design methodology is used -
PDL [Caine and Gordon (5)] and Mascot



