9561037

SOFTWARE
ENGINEERING
EXPLAINED

P31 9561037

SOFTWARE
ENGINEERING
EXPLAINED

' f

$‘ll\l\\\\\\\\\I\ll\\lI\\I\\\I\\IIN\\\\\\ll\\ll\

EEEEEEEE

Chichester - New York - Brisbane - Toronto - Singapore

Copyright © 1992 by John Wiley & Sons Ltd,
Baffins Lane, Chichester,
West Sussex PO19 1UD, England

All rights reserved.

BT will donate the royaltles from the sale of this
book to charity—Save the Children Fund (MN),
National Lifeboat Institution (PR)

No part of this book may be reproduced by any means,
or transmitted, or translated into a machine language
without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane,
Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario M9W 1L1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04,
Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloguing-in-Publication Data

Norris, Mark.
Software engineering explained / Mark Norris, Peter Rigby.
. cm. 3
lngludes bibliographical references and index.
ISBN 0471 92950 6.
1. Software engineering. I. Rigby, Peter. Il Title. f
005. 1—dc20 L o ofad1aly
' CIP

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 471 92950 6

Typeset in 10/12pt Palatino from author’s disks by Text Processing Department,
John Wiley & Sons Ltd, Chichester
Printed and bound in Great Britain by Courier International, East Kilbride

| Preface

This book aims to introduce and explain some of the more important aspects
of modern software development. It is not a detailed guide to any one part
of the software development process, nor is it a reference manual for the soft-
ware engineer. There are many excellent texts listed at the end of the book
with more detail in specific areas . This is meant to be an overview of basic
good practice in the specification design and operation of quality software.

Some chapters of the book are designed to stand alone—for instance the
middle chapters (4 to 7) each deal with one major part of the software develop-
ment process and are supported by a catalogue of techniques and a check-
list to help their implementation. The book as a whole, though, is designed
primarily as a source of information rather than a software reference manual.

The intended readership is fairly broad. Our aim was to write a primer
for people with no formal background in software whose jobs have become
dominated by it. In addition to this, the practical bias of the information here
would be of use both to managers of software projects and to students about
to embark on a career in software.

Above all, we hope it is interesting, useful to dip into, but mainly fun to read.

We would like to thank several people whose co-operation and fore-
bearance have helped with this book.

Malcolm Payne for his constructive review of the initial drafts and his
continual encouragement. Bob Higham for his careful reading of the com-
pleted text. Debbie Legassie for converting our hieroglyphics into English
(American) text... and always with a smile on her face. To our many friends
and colleagues in BT Software Development and Technology divisions
whose experience and advice has been invaluable, especially Ray Lewis,
Sinclair Stockman, John Foster, Dave Bustard, David Horncastle, Trevor
Matthews and Jonathan Mitchener. Last, but not least, our wives, Fiona and
Liz, for their forebearance, patience and support throughout. ;

M. Norris
P. Rigby

Foreword

Software, or rather the ability to produce it, is now recognised as the key
to competitive advantage in a high technology business. This book is a
guide for those who want to win that advantage. It is not theoretical—there
are already many excellent textbooks that address those aspects of software
engineering.

The book aims to highlight the key concerns that have to be addressed
by anyone involved in the development of software-dominated systems.
For each of these concerns the book explains the current state of the art,
what the known pitfalls are and what tools and techniques are available
to help.

The book brings modern software engineering techniques to professionals
who are working in the software industry. This does not mean to say that
it looks solely at the software engineering professional—many engineer-
ing professionals wish to adopt software engineering as a second string to
their bow.

A second category of audience for this book is those undergraduates who
are intending to take up a career in the commercial software field, as it intro-
duces the techniques required to scale theory into practice.

Before we look at the possible solutions that this book may offer, it is
interesting to spend a few minutes reflecting on the nature of software itself.
[t is characterised by the fact that the whole product is documentation in-
one form or another. Indeed, in many instances, it is just a very long piece
of program text, generated with no concept of how it can be broken down
into configuration items and subsequently rebuilt to form the product.

The principle of structured software, that each portion is simple to under-
stand and modify, is crucial. This can only be achieved in software—the
product—if the process by which it is produced is well founded. The main
part of this book therefore addresses the main process steps in producing
reliable, long-lived software, from requirements capture, through to main-
tenance and eventual retirement.

At the end of the day, whatever the software application and however it

xli

FOREWORD

is defined, its objective is to instruct a machine to do a certain specified oper-
ation. It must be able to do this operation time and time and time again,
without fail, to the satisfaction of the people who are using it. The important
point that has emerged in software development over the last few years is
that the creation and support of a system is a demanding intellectual process.
This book brings together several years of experience and investigation into
the process, and I would like to think that reading it will save the reader
from reinventing the wheel, and more especially from coming up with a
square one without giving thought to the option of rounding the corners.

A.G. Stoddart

Contents

Preface

Foreword

ix

xi

Chapter1 Why Software Matters 1

Chapter 2

Chapter 3

1.1
12
1.3
14
1.5
1.6
1.7
1.8

Software Failures 1
Software Costs 4
Quality Assurance 9
Quality Control 11
Quality Improvement 12
Quality by Design 13
Summary 14

References 15

Characteristics of Software 17

2.1
22
23
2.4
2.5
2.6
2.7
2.8

Some General Definitions 18
Complexity 21

Programs and Data 22,
Measurement 23

The ‘Laws of Software’ 24
Future Needs 26

Summary 27

References 28

The Evolution of Software Systems 29

3.1
3.2
3.3
3.4
3.5
3.6
3.7

The Software Lifecycle 30

More Lifecycles 34

The Software Deathcycle 38

Quality in the Lifecycle 41

The Practicalities of Using Lifecycle Models 44
Summary 44

References 45

CONTENTS

Chapter 4

Chapter 5

Chapter 6

Chapter 7

System Requirements 47

4.1 Scope of Requirements 47

4.2 Basi- Principles and Ideas 50

4.3 The Main Problem Areas 52

4.4 Current Approaches to Requirements
Capture and Analysis 53

4.5 A General Approach 60

4.6 A Requirements Checklist 64

4.7 Summary 66

4.8 References 67

Software Design 69

5.1 Scope of Software Design 69

5.2 Basic Principles and Ideas 70

5.3 Design Methods 71

5.4 Problems of Software Design Methods 71
5.5 Current Trends in Software Design 73
5.6 Notations Used in Software Design 74
5.7 Major Methods in Current Use 82

5.8 Emerging Approaches 93

5.9 Other Design Methods 97

5.10 A Design Checklist 101

5.11 Summary 103

5.12 References 103

Testing 105
6.1 Why Testing Matters 106

. 6.2 Some Systematic Approaches to Testing 108

6.3 Problem Areas in Testing 109
6.4 Techniques for Testing 111
6.5 Test Standards 118

6.6 When to Stop Testing 119

6.7 Tool Support 121

6.8 Trends and Influences 123
6.9 A Testing Checklist 124

6.10 Summary 126

6.11 References 127

Maintenance 129

7.1 Introduction 129

7.2 The Maintenance Problem 130

7.3 Maintenance in the Software Lifecycle 132
7.4 The Management of Maintenance 135

7.5 The Software Configuration 138

7.6 Maintenance jin Operation 140

CONTENTS

vii

7.7
7.8
79
7.10

Improving Maintenance 146
A Maintenance Checklist 148
Summary 150

References 151

Chapter 8 A History of Quality 153

8.1
8.2
8.3
8.4
8.5
8.6

Total Quality Management (TQM) 153
Quality Management Systems 158

A Brief Guide to the ISO 9000 Quality Systems
The Link Between TQM and QMS 169
Summary 170

References 170

Chapter 9 Quality Management Systems 171

9:1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Introduction 171

Managing a QMS 172

The Common Pitfalls of Quality 177

A Checklist for Implementing a QMS 180
Where Next? 181

A Final Point 182

Summary 183

References 183

Chapter 10 Software in the New Decade 185

10.1
10.2
10.3
10.4
10.5
10.6

Glossary 197

Introduction 185

Project Management 186

Risk-based Project Management 187
Quality in the Future 190

The Quality Drivers 193

Finale 195

Bibliography 205

Index 207

161

Why Software Matters

There are only two commodities that will count in the 1990s.
Onie is oil and the other is software. And there are
alternatives to oil

Bruce Bond

Software engineering is all about producing what the customer wants
within time and cost constraints. A quality product to do this requires a mix
of technical and organisational skills. That is what this book is all about.
Later chapters look at some of the important tools and techniques that can-
be used in developing a software system. Before we start, though, there is
an important question that needs to be answered:
S
Does software quality really matter that much?

There is no straightforward answer to the question but there are ways of
gaining some insight on it. The first is in terms of the damage that can be
wreaked by faulty software, the second is simply based on the cost of pro-
ducing and maintaining software. The next two sections give a few examples
of the importance of software quality from the ‘catastrophe’ and ‘cost’ per-
spectives. The reader is left to assess the relevance of the examples in their
own environment.

1.1 SOFTWARE FAILURES

For obvious reasons, the developers and owners of software systems—espe-
cially those in safety or life-critical areas—are usually unwilling to discuss
failures which have occurred. Nevertheless, some notable instances of fail-
ure have been recorded and they provide valuable evidence of the critical
need for software quality.

2 WHY SOFTWARE MATTERS

Radiotherapy equipment

A radiotherapy machine was designed to operate in two different modes.
In the first mode, the machine delivered a low dosage of radiation; in the
second mode, the machine delivered a much higher dosage to a smaller
area, with a mask in place to screen the rest of the patient. In the reported
incident, the high dosage was given, without the mask in place, and the
patient died.

According to the inquest, the control system for the radiotherapy machine
was a software-controlled replacement for an earlier hardwired version. In
the earlier version of the machine, there was a safety interlock which pre-
vented the high dosage unless the mask was positively in place; it appears

~ that the software version of the system lacked this interlock.

Misguided torpedo

A conference on safety and security of software systems featured a report
on the safety system in a torpedo that was designed to prevent it return-
ing in error to destroy the ship which had launched it. It achieved this by
detecting that the torpedo had turned through 180° and was threatening
its source. If this was the case, it was automatically detonated before it could
return to do harm.

Unfortunately, when the torpedo was being tested, it was launched with
a live warhead, but its motor failed and this left the live torpedo lodged in
the torpedo tube. The ship’s captain decided to abandon the test and return
to port. As soon as the ship was turned round, the torpedo did its duty and
exploded in the tube.

Autoland system

A prototype automatic plane landing system was designed to work in two
stages. In stage 1 the plane flew down a beam which determined the
approach path. If the plane lost the beam, the system applied power and
flew the plane around for a retry. In stage 2 a ground detector sensed that
the plane was within a few feet of the ground, cut the engine and raised the
nose to land the plane. In separate testing both systems worked perfectly.

In the first live test, both systems again worked perfectly. The plane flew
down the beam until the second system detected that it was near the
ground, then the engine cut back, the nose was raised, and the plane started
to sink. Then it lost the beam. The engine was boosted to high power and
the nose was lowered by the first system. Before the second system cut back
in, the plane flew into the ground.

A similar system, developed a few years later, demonstrates a less dramatic
but no less serious problem. In this instance, as before, the software worked

1.1 SOFTWARE FAILURES %

perfectly. During tests the plane landed every time with unerring accuracy.
After a few weeks, however, revision of the system (i.e. rework of the soft-
ware) was required, not because of malfunction but because the test run-
way was beginning to break up where the plane unfailingly alighted. 7
This second example illustrates an important point. Despite the fact that
not all system failures are the fault of the software, it is the system element
 that is, almost invariably, changed to cope with such unforseen circum-

stances as described above.
\

Chemical plant

The specification to the programmers stated that, if an error was detected,
they should keep all controlled variables constant and sound an alarm. The
programmers were not chemical engineers.

In the reported incident, the system received a signal from an oil sump
that the oil level was low. In accordance with the specification, the system
stopped changing any values and issued an operator alarm. By coincidence,
the system had just released a catalyst into the reactor and was in the pro-
cess of increasing the water flow to the condenser. The water flow was held
at a low level, the reactor overhéated and the pressure release valve vented
a quantity of noxious fumes into the atmosphere. Meanwhile the operators
investigated the alarm, discovered that the oil level was actually correct,
and did not notice the reactor overheating.

None of these examples are exceptional. In fact they appear to be fairly
reproducible. A recent report of a high-speed-train braking system revealed
that the prototype implemeritation was designed to operate in one mode
up to 50 mph and in a second mode above 50 mph. Unfortunately, attempts
to stop the train when it was travelling at precisely 50 mph were fruitless
as neither mode of braking would operate at this speed. The problem, in
essence, was the same as the first of the autoland incidents described earlier.

The reason for revisiting these sad cases here is simply to illustrate the
fragile divide between satisfactory operation and disaster.

In order to learn from these mistakes, it is important to examine the root
causes of failure—missing requirements, a misunderstanding of the func-
tion of the system, and the like. A point that will come up several times in
this book is that software quality is not simply a matter of well structured
code or accurate design. It relies on a systematic approach that covers the
entire system development and allows inconsistencies to be revealed [Hil88].

Returning to the original question of whether software quality matters,
there are many applications that rely to some extent on software, from"
nuclear reactors to fly-by-wire passenger aircraft to banking systems. Failure
as described above could be catastrophic in any of them It would be unreal-
istic to expect perfection on every occasion but the value of eradicating any
error should be clear.

"

& -WHY SOFTWARE MATTERS

1.2 SOFTWARE COSTS

To some people, money is almost as emotive an issue as life itself. For that

- select band (and for the information of everyone else), there are some inter-
esting figures that show just how much software costs now and is likely to -
cost in years to come.

Before going into detail, a few trends taken from a number of the strategic
reports published [ACAB86] highlight the central importance of software to
all companies involved in any form of information technology. Some of the
more striking points made are:

@ Software currently accounts for about 5% of the UK gross national prod-
uct and, given the trends over the last ten years (shown in Figure 1.1a),
this is likely to grow.

® The proportion of IT costs attributable to software rose from 40% in 1980
to 80% in 1990 (see Figure 1.1Db).

® The European software services market, estimated at 40BEcu in 1990, is
set to rise to more than 60BEcu by 1993.

In addition to these gross-size figures, these strategic reports have iden-
tified a number of key problems, the main ones being [Hob90]:

@ Onaverage, large software systems are delivered a year behind schedule.
@ Only 1% of major software projects finish on time, to budget.
e 25% of all software-intensive projects never finish at all.

e Over 60% of IT product managers have little or no experience of modern
software engineering practice.

The effects of the above factors have been estimated, in cost terms, to
be of the order of two billion pounds a year in the UK alone. The overall
picture is of a costly area of technology, growing rapidly in which failures
are rife.

So far we have set the general environment and trends. To give a better
feel for the actual scale of investment in software, we can look at a ‘typical’
small software company. Since there is no apparent source of reproducible
information on industrial software productivity, the line taken is to state
what is known, or can be reasonably assumed and to derive a reasonable
overall picture.

Assumptions

(a) There are about 100 engineers in the company involved with software
development and maintenance.

1.2 SOFTWARE COSTS ¥ 5

(b) The split of effort on development and maintenance is 47:53. This fig-
ure is an average across a number of software maintenance surveys and
accords reasonably well with published data from the US.

(c) In terms of lines of code (loc), the average for development is about
20.loc/person/day. For maintenance an average programmer load is
about 17 000 loc/person/pa. The former is a guess based on hearsay
and experience, the latter is from published data.

Observations

(a) Given the number of software engineers engaged on maintenance, 53,
and the amount that each can maintain, we can derive that there are
about 900 Kloc deployed at any one time.

(b) The other 47 engineers must be developing code at a rate of 20 loc/day
for 45 weeks in a year. This equates to around 210 Kloc of new code a
year. There are a number of factors that come into play at this point: the
amount of code taken out of service (about 90 Kloc every year, assuming

- an average lifetime of 10 years); the attrition rate of projects (if 25% never
complete, only about 155 Kloc are usefully added every year; 90 Kloc
replacement, 65 Kloc new).

(c) Taking the example figures used above, our small company increases
the amount of software deployed by 65 Kloc per annum. This rise of just
over 8% equates quite closely with the general trend for increasing pro-
portions of software in systems (but ignores any increase in the num-
ber of systems, so is probably on the low side).

For all their subjectivity, the above figures are not at all unexpected—they
are reasonably in line with common experience and can be backed up with
published material. There are two key points that emerge:

e That if our small company had to replace its entire software base, it
would, by any standards, be a costly exercise.

e The annual bill for software development and maintenance is large
(simply based on the volume of code) and is growing.

Both of these points indicate that the cost of poor quality is potentially
high: if a software product is not fit for its purpose it can become more of
a liability than an asset [Boe88].

One final point that needs to be considered in answering the question of
whether software quality matters is that of liability. It is likely that, in future,
suppliers of software systems will be accountable for the sort of failures

WHY SOFTWARE MATTERS

SN OU4 Ul SO84 L S} UBNOIY} 8IDMIJOs JO @ouppodull Diouods Buisoaiouay) (0)1°| @nbig

/861 €861 661
N i -
T T T
G 0]
Buunjoejnuepy
7 e i 1 ¢
uoRONIISUOD
dND
/ o O.N
aoueul
‘aoueinsul © 191em 3 ABisu3z
‘Bunjueg
ol.9C
9JEMOS MN
v A(8) it 0f

6.6 Ul 8NUBABI

=oney
Jeak ul anuaaal

1.2 SOFTWARE COSTS

0661

JusuoduwoD WejsAs D SD SIDMYOS JO aoupujwop Buisoeioul 8yl (Q)1°i @nbi4

086}

8oUBUBIUIBU BIEMYOS

juswdojoAsp 8Jemlyos

aiempreH

(@)

0c

09

%001

WHY SOFTWARE MATTERS

illustrated at the beginning of this chapter. In Europe it is already the case
that due care and attention has to be shown by the supplier. The prospect
of law suits could well introduce a new clarity to the costs of failure!

Overall, it would seem that there is more than sufficient cause for
concern over the quality of software, both in terms of safety and cost. The
question now is what can be done to achieve ‘quality’.

Before this can be answered, we have to define what we mean by ‘quality’.
As far as the end user is concerned quality is fitness for purpose and can
be viewed as a combination of a number of ‘desirable features’. The pro-
vision of the required level of functionality is obviously crucial in this—the
software must do what the user wants. There are a number of other
attributes that differentiate good quality software; its performance, relia-
bility, usability; etc. and it is often these attributes that have most impact
[Hig90]. A user may be able to tolerate the lack of a particular function but
poor system response or unreliability may lead to total rejection of the
system. The user’s perception of quality is based on the following types of
system features. :

e Reliability. Good-quality software systems should not crash every time
exceptional loads or data are applied. The increasing dependence on
(networked) software systems is driving expectation of higher levels of
reliability.

e Security. This covers both confidentiality and access rights. Again, greater
dependence on software systems is driving the need for their protection.

e Adaptability. Software needs to be amenable to change. If it cannot be
readily updated to meet changing market/legislative needs then it will
rapidly fall into disuse.

e Performance. Users expect to work at interactive speeds. Response times
must match this need.

e Usability. This includes ease of use, ease of learning, presentation and
attractiveness. A far greater level of user adaptability is expected in
modern systems.

The above list is far from exhaustive but it does provide a basis for what
software systems really need to deliver if they are to satisfy end users
[FII89]. Figure 1.2 indicates how some of these quality factors can be related
to user needs. :

The achievement of quality as defined in user terms is far from easy. If
there was, this book could be reduced to a short pamphlet. The problem is
that quality in the above terms is only achieved by ensuring that a whole
range of technical and organisational issues are adequately addressed by
the supplier. And there is no formula or recipe tc ensure that the tools and
techniques used to produce the software will result in what the user really
wanted.

