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PREFACE

My purpose in this hook is to treat linear transformations on finite-
dimensional vector spaces by the methods of more general theories. The
idea is to emphasize the simple geometric notions.common to many parts
of mathematics and its applications, and to do so in a language that gives
away the trade secrets and tells the student what is in the back of the minds
of people proving theorems about integral equations and Hilbert spaces.
The reader does not, however, have to share my prejudiced motivation.
Except for an occasional reference to undergraduate mathematics the book
is self-contained and may be read by anyone who is trying to get a feeling
for the linear problems usually discussed in courses on matrix theory or
‘“higher’” algebra. The algebraic, coordinate-free methods do not lose power
and elegance by specialization to a finite number of dimensions, and they
are, in my belief, as elementary as the classical coordinatized treatment.

I originally intended this book to contain a theorem if and only if an
infinite-dimensional generalization of it already exists. The tempting
easiness of some essentially finite-dimensional notions and results was,
however, irresistible, and in the final result my initial intentions are just
barely visible. They are most clearly seen in the emphasis, throughout, on
generalizable methods instead of sharpest possible results. The reader may
sometimes see some obvious way of shortening the proofs I give. In such
cases the chances are that the infinite-dimensional analogue of the shorter
proof is either much longer or else non-existent.

A preliminary edition of the book (Annals of Mathematics Studies,
Nuntber 7, first published by the Princeton University Press in 1942) has
been circulating for several years. In addition to some minor changes in
style and in order, the difference between the preceding version and this.
one is that the latter contains the following new material: (1) A brief dis-
cussion of fields, and, in the treatment of vector spaces with inner produects,
special attention to the real case. (2) A definition' of determinants in
invariant terms, via the theory of multilinear forms. (3) Exercises.

The exercises (well over three hundred of them) constitute the most
significant addition; I hope that they will be found useful by both student
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and teacher. There are two things about them the reader should know.
First, if an exercise is neither imperative (“prove that . . .””) nor interroga-
tive (“is it true that . . . ?””) but merely declarative, then it is intended
as a challenge. For such exercises the reader is asked to discover if the-
assertion is true or false, prove it if true and construct a counterexample if
false, and, most important of all, discuss such alterations of hypothesis and
conclusion as will make the true ones false and the false ones true. Second,
the exercises, whatever their grammatical form, are not always placed so
as to make their very posxtxon a hint to their solution. Frequently exer-
cises are stated as soon as the statement makes sense, quite a bit before
machinery for a quick solution has been developed. A reader who tries
(even unsuccessfully) to solve such a “misplaced” exercise is likely to ap-
preciate and to understand the subsequent developments much better for
his attempt. Having in mind possible future editions of the book, I ask
the reader to let me know about errors in the exercises, and to suggest im-
provements and additions. (Needless to say, the same goes for the text.)
None of the theorems and only very few of the exercises are my discovery;
most of them are known to most working mathematicians, and have been
known for a long time. Although I do not give a detailed list of my sources,
I am nevertheless deeply aware of my indebtedness to the books and papers
from which I learned and to the friends and strangers who, before and
after the publication of the first version, gave me much valuable encourage-
ment and criticism. I am particularly grateful to three men: J. L. Doob
and Arlen Brown, who read the entire manuscript of the first and the
second version, respectively, and made many useful suggestions, and
John von Neumann, who was one of the originators of the modern spirit
and methods that I have tried to present and whose teaching was the
inspiration for this book. ”
P. R. H.
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CHAPTER 1

_ SPACES

§ 1. Fields

In what follows we shall have occasion to use various classes of numbers
(such as the class of all real numbers or the class of all complex numbers).
Because we should not, at this early stage, commit ourselves to any specific
class, we shall adopt the dodge of referring to numbers as scalars. The
reader will not lose anything essential if he consistently interprets scalars
as real numbers or as complex numbers; in the examples that we shall
study both classes will occur. To be specific (and also in order to operate
at the proper level of generality) we proceed to list all the general facts
about scalars that we shall need to assume.

(A) To every pair, « and B, of scalars there corresponds a scalar a + 8,
called the sum of o and B, in such a way that

(1) addition is commutative, a + 8 = 8 + «,

(2) addition is associative, a + (8 + v) = (@ + B8) + v,

(3) there exists a unique scalar 0 (called zero) such that @ + 0 = « for
every scalar o, and

(4) to every scalar « there corresponds a unique scalar —a such: that
a+ (—a) =0.

(B) To every pair, @ and B, of scalars there corresponds a scalar a8,
called the product of « and B, in such a way that

(1) multiplication is commutative, o = Ba,

(2) multiplication is associative, a(8y) = (aB)7,

(3) there exists a unique non-zero scalar 1 (called one) such that al = «
for every scalar «, and

(4) to every non-zero scalar a there corresponds a unique- scalar o'

1
(or -—) such that aa™ = 1.

a



2 SPACES Sec. 1

(C) Multiplication is distributive with respect to addition, a(8 + )
= af + ay.

If addition and multiplication are defined within some set of objects
(scalars) so that the conditions (A), (B), and (C) are satisfied, then that
set (together with the given operations) is called a field. Thus, for example,
the set @ of all rational numbers (with the ordinary definitions of sum
and product) is a field, and the same is true of the set ® of all real numbers
and the set @ of all complex numbers.

EXERCISES

1. Almost all the laws of elementary arithmetic are consequences of the axioms
defining a field. Prove, in particular, that if § is a field, and if , 8, and v belong
to &, then the following relations hold.

(a) 0+ a=a.

(b) fa+p =a+7, thenﬁ Y.

(c)at+(B—a)=pB. (Heref—a=8+(-a))

d)a0=0a= 0 (For clanty or emphasis we sometimes use the dot to indi-
cate multiplication.)

e (—Da= —a

() (—a)(—B) =

(g) faf =0, then elther a = 0orfB = 0 (or both).

2. (a) Is the set of all positive integers a field? (In familiar systems, such as the
integers, we shall almost always use the ordinary operations of addition and multi-
plication. On the rare occasions when we depart from this convention, we shall
glve ample warning. As for “positive,” by that word we mean, here and elsewhere
in this book, “greater than or equal to zero.” If 0 is to be excluded, we shall say

“strictly posltlve ”)

(b) What about the set of all integers?

(c) Can the answers to these questions be changed by re-defining addmon or
multiplication (or both)?

3. Let m be an integer, m = 2, and let Z,, be the set of all positive integers less
than m, Zm = {0, 1, ---, m — 1}. If @ and B are in Zn, let a 4+ B be the least
positive remainder obtained by dividing the (ordinary) sum of a and 8 by m, and,
similarly, let o8 be the least positive remainder.obtained by dividing the (ordinary)
product of @ and 8 by m. (Example: if m = 12, then3 4+ 11 = 2 and 3-11 = 9.)

(a) Prove that Z,, is a field if and only if m is a prime.

(b) What is —1 in Zs?

(c) What is % in Z;?

4. The example of Z, (where p is a prime) shows that not quite all the laws of
elementary arithmetic hold in fields; in Z,, for instance, 1 + 1 = 0. Prove that
if ¥ is a field, then either the result of repeatedly adding 1 to itself is always dif-
ferent. from 0, or else the first time that it is equal to 0 occurs when the number
of summands is a prime. (The characterisiic of the field F is defined to be 0 in the
first case and the crucial prime in the second.)
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5. Let ©(1/2) be the set of all real numbers of the form a + §+/2, where
« and @ are rational.

(a) Is @(+v/2) a field?

(b) Whatnfaandﬁarereqmredtobemtegers?

6. (a) Does the set of all polynomials with integer coefficients form a field?
(b) What if the coefficients are allowed to be real numbers?

7. Let § be the set of all (ordered) pairs (a, 8) of real numbers.
(a) If addition and multiplication are defined by

(,B)+(@d)=>@+v,8+9)
(e, B)(v, 8) = (erv, BY),
does & become a field?
(b) If addition and multiplication are defined by
(axﬂ)"l' (7; 6) - (a+7;ﬁ+8)
(o, B)(v, 8) = (ay — Bd, ad + Bv),
is F a field then?

(c) What happens (in both the preceding cases) if we consider ordered pairs of
complex numbers instead?

and

and

§ 2. Vector spaces

We come now to the basic concept of thls book. For the definition
that follows we assume that we are given a particular field &; the scalars
to be used are to be elements of &.

DEFINITION. A vector space is a set U of elements called vectors satisfying
the following axioms.

(A) To every pair, z and y, of vectors in U there corresponds a vector
z + y, called the sum of z and y, in such a way that

(1) addition is commutative,z + y = y + z,

2y addltlonlsassoclatlve, z+ @y +2) = (:t +y) +z2

(3) there exists in U a unique vector 0 (called the ongm) such that
z4+0= zforeveryvectorz, and

(4) to every vector z in U there corresponds a unique vector —z such
that z + (—z) = 0.

(B) To every pair, «.and z, where « is a scalar and z is a vector in U,
there corresponds a vector az in U, called the product of a and z, in such
a way that

(1) multiplication by scalars is associative, a(8z) = (a8)z, and

(2) 1z = z for every vector z.
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(C) (1) Multiplication by scalars is distributive with respect to vector
addition, a(z + ¥) = az + ay, and

(2) multiplication by vectors is distributive with respect to scalar ad-
dition, (a + B)z = ax + Bz.

These axioms are not claimed to be logically independent; they are
merely a convenient characterization of the objects we wish tostudy The
relation between a vector space U and the underlying field & is usually
described by saying that © is a vector space over . If & is the field ®
of real numbers, U is called a real vector space; similarly if ¥ is @ or if &
is @, we speak of rational vector spaces or complex vector spaces.

§ 3. Examples

Before discussing the implications of the axioms, we give some examples.
We shall refer to these examples over and over again, and we shall use the
notation established here throughout the rest of our work.

(1) Let @€'(= @) be the set of all complex numbers; if we interpret
z + y and az as ordinary complex numerical addition and multiplication,
e! becomes a complex vector space.

(2) Let @ be the set of all polynomials, with complex coefficients, in a
variable {. To make @ into a complex vector space, we interpret vector
addition and scalar multiplication as the ordinary addition of two poly-
nomials and the multiplication of a polynomial by a complex number;
the origin in @® is the polynomial identically zero.

Example (1) is too simple and -example (2) is too compllcawd to be
typical of the main contents of this book. We give now another example
of complex vector spaces which (as we shall see later) is general enough for
all our purposes. : .

3) Let €*, n = 1,2, ---, be the set of all n-tuples of complex numbers.
Ifz= (&4, ---, &) and y= ("’l) Y ’ln) are elements of c*, we write, by
definition, v .
zt+y= & +m, - &+ 1),

227 = (a1, - - -, afn),
0= (0) '“’0))
-z = (=, *+-, —&a)

It is easy to verify that all parts of our axioms (A), (B), and (C), § 2, are
satisfied, so that @™ is a complex vector space; it will be called n-dimensional
complex coordinate space.
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(4) For each positive integer n, let @, be the set of all polynomials
(with complex coefficients, as in example (2)) of degree =<n — 1, together
with the polynomial identically zero. (In the usual discussion of degree,
the degree of this polynomial is not defined, so that we cannot say that it
has degree <n-— 1.) With the same interpretation of the linear operations
(addition and scalar multiplication) as in (2), ®, is a complex vector space.

(5) A close relative of @" is the set ®" of all n-tuples of real numbers.
With the same formal definitions of addition and scalar multiplication as
for €, except that now we consider only real scalars a, the space &" is
a real vector space; it will be called n-dimensional real coordinate space. ”' .. -

(6) All the preceding examples can be generalized. Thus, for instance,
an obvious generalization of (1) can be described by saying that every
field may be regarded as a vector space over itself. A common generaliza-
tion of (3) and (5) starts with an arbitrary field § and forms the set
of n-tuples of elements of ¥; the formal definitions of the linear operations
are the same as for the case § = €.

(7) A field, by definition, has at least two elements; a vector space,
however, may have only one. Since every vector space contains an origin,
there is essentially (i.e., except for notation) only one vector space having
only one vector. This most trivial vector space will be denoted by ©.

(8) If, in the set ® of all real numbers, addition is defined as usual and
multiplication of a real number by a rational number is defined as usual,
then ® becomes a rational vector space.

(9) If, in the set € of all complex numbers, addition is defined as usual
and multiplication of a complex number by a real number is defined as
usual, then € becomes a real vector space. (Compare this example with
(1); they are quite different.)

§ 4. Comments

A few comments are in order on our axioms and notation. There are
striking similarities (and equally striking differences) between the axioms
for a field and the axioms for a vector space over a field. - In both cases,
the axioms (A) describe the additive structure of the system, the axioms
(B) describe its multiplicative structure, and the axioms (C) describe the
connection between the two structures. Those familiar with algebraic
terminology will have recognized the axioms (A) (in both § 1 and § 2) as
the defining conditions of an abelian (commutative) group; the axioms (B)
and (C) (in § 2) express the fact that the group admits scalars as operators.
We mention in passing that if the scalars are elements of a ring (instead
of a field), the generalized concept correspondmg to a vector space is
called 8 module.
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Special real vector spaces (such as ®* and ®®) are familiar in geometry.
There seems at this stage to be no excuse for our apparently uninteresting
insistence on fields other than ®, and, in particular, on the field @ of complex
numbers. We hope that the reader is willing to take it on faith that we
shall have to make use of deep properties of complex numbers later (con-
jugation, algebraic closure), and that in both the applications of vector
spaces to modern (quantum mechanical) physics and the mathematical
generalization of our results to Hilbert space, complex numbers play an
important role. Their one great disadvantage is the difficulty of drawing
pictures; the ordinary picture (Argand diagram) of @' is indistinguishable
from that of ®%, and a graphic representation of @2 seems to be out of human
reach. On the occasions when we have to use pictorial language we shall
therefore use the terminology of ®" in €", and speak of €Z, for example,
as a plane.

Finally we comment on notation, We observe that the symbol 0 has
been used in two meanings: once as a scalar and once as a-vector. To make
the situation worse, we shall later, when we introduce linear functionals
and linear transformations, give it still other meanings. Fortunately the
relations among the various interpretations of 0 are such that, after this
word of warning, no confusion should arise from this practice.. '

EXERCISES

1. Prove that if z and y are vectors and if « is a scalar, then the following rela-
tions hold.

a) 04z ==z

(b) =0 =0.

(¢) a0 =0.

(d) 0-z = 0. (Observe that the same symbol is used on both sides of this equa-
tion; on the left it denotes a scalar, on the right it denotes a vector.)

(e) If ax = 0, then either @ = 0 or z = 0 (or both).

() —z= (-1

@ y+@E—y)=z2 (Herez—y=2z+(-y))

2. If p is a prime, then Z," is a vector space over Z, (cf. § 1, Ex. 3); how many
vectors are there in this vector space? ’

3. Let 'V be the set of all (ordered) pairs of real numbers. If z = (El; &) and
y = (m, ne) are elements of V, write _

z+y=E+n b+
az = (afy, 0)
0=(0,0)
-z = (—&, —&).
Is U a vector space with respect to these definitions of the linear operations? Why?
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4. Sometimes a subset of a vector space is itself a vector space (with respect to
the linear operations already given). Consider, for example, the vector space €*
and the subsets ‘U of C? consisting of those vectors (£, £, E;) for which

(a) &iis l‘e&]

(b) &1 =

(c) either £x =0orf =0,
(d) fl +&£=0,

) i+&=1.
In which of these cases is ‘U a vector space?

5. Consider the vector space @ and the subsets U of @ conmstmg of those vectors
(polynomials) z for which

() z has degree 3,

(b) 2z(0) = (1),

(c) z(t) = 0 whenever 0 =t = 1,

(d) z(t) = z(1 —¢) for all &
In which of these cases is U a vector space?

 §5. Linear dependence

Now that we have described the spaces we shall work with, we must
specify the relations among the elements of those spaces that w1ll be of
interest to us.

We begin with a few words about the summation notation. If cor-
responding to each of a set of indices ¢ there.is given a vector z;, and if it
is not necessary or not convenient to specify the set of indices exactly,
we shall simply speak of a set {z;} of vectors. (We admit the possibility
that the same vector corresponds to two distinct indices.” In all honesty,
therefore, it should be stated that what is important is not which vectors
appear in {z;}, but how they appear.) If the index-set under consideration
is finite, we shall denote the sum of the corresponding vectors by > ; z:
(or, when desirable, by a more explicit symbol such as Y7~ z;). In order
to avoid frequent and fussy case distinctions, it is a good idea to admit
into the general theory sums such as E; z; even when there are no indices
1 to be summed over, or, more precisely, even when the index-set under
consideration is empty. (In that case, of course, there are no vectors to
sum, or, more precisely, the set {z;} is also empty.) The value of such
an “empty sum’’ is defined, naturally enough, to be the vector 0.

DErFINITION. A finite set {z;} of vectors is linearly dependent if there
exists a corresponding set {a;} of scalars, not all zero, such that

Qi =0,

If, on the other hand, ) ¢ ai; = 0 implies that a; = 0 for each f, the
set {2;} is linearly independent.
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The wording of this definition is intended to cover the case of the empty
set; the result in that case, though possibly paradoxical, dovetails very
satisfactorily with the rest of the theory. The result is that the empty
set of vectors is linearly independent. Indeed, if there are no indices 7,
then it is not possible to pick out some of them and to assign to the selected
ones a non-zero scalar so as to make a certain sum vanish. The trouble
is not in avoiding the assignment of zero; it is in finding an index to which
something can be assigned. Note that this argument shows that the
empty set is not linearly dependent; for the reader not acquainted with
arguing by “vacuous implication,” the equivalence of the definition of
linear independence with the straightforward negation of the definition
of linear dependence needs a little additional intuitive justification. The
easiest way to feel comfortable about the assertion “) ; awz; = 0 implies

" that a; = O for each #,” in case there are no indices 1, is to rephrase it this
way: “if D¢ agz; = 0, then there is no index ¢ for which a; # 0.” This
version is obviously true if there is no index 7 at all.

Linear dependence and independence are properties of sets of vectors;
it is customary, however, to apply the adjectives to vectors themselves,
and thus we shall sometimes say ‘‘a set of linearly independent vectors”
instead of “a linearly independent set of vectors.” It will be convenient
also to speak of the linear dependence and independence of a not necessarily
finite set, &, of vectors. We shall say that & is linearly independent if
every finite subset of X is such; otherwise X is linearly dependent.

To gain insight into the meaning of linear dependence, let us study the
examples of vector spaces that we already have.

(1) If z and y are any two vectors in €!, then « and y form a linearly
dependent set. If z = y = 0, this is trivial; if not, then we have, for
example, the relation yz 4+ (—z)y = 0, Since it is clear that every set
containing a linearly dependent subset is itself linearly dependent, this
shows that in @! every set containing more than one element is a linearly
dependent set. .

(2) More interesting is the situation in the space ®. The vectors z, y,
and z, defined by

z(t) = 1 =1,

y@® = (1 -9,
z(t) = 1 — £,

are, for example, linearly dependent, since z + y —2z=0. However, the
infinite set of vectors zo, 21, Z3, - - -, defined by

zo(t) = 1, z1(6) =1, z3(f) = F: ]
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is a linearly independent set, for if we had any relation of the form
agZo + a1Z1 +- -+ aaZa = 0,
then we should have a polynomial identity
@+ art +- -+ anl® =0,
whence ag=a; =++=qa, =0.

(3) As we mentioned before, the spaces @" are the prototype of what
we want to study; let us examine, for example, the case n = 3. To those
familiar with higher-dimensional geometry, the notion of linear dependence
in this space (or, more properly speaking, in its real analogue ®®) has a
concrete geometric meaning, which we shall only mention. In geometrical
language, two vectors are linearly dependent if and only if they are col-
linear with the origin, and three vectors are linearly dependent if and
only if they are coplanar with the origin. (If one thinks of a vector not
as g point in a space but as an arrow pointing from the origin to some given
point, the preceding sentence should be modified by crossing out the phrase
“with the origin’’ both times that it occurs.) We shall presently introduce
the notion of linear manifolds (or vector subspaces) in a vector space, and,
in that connection, we shall occasionally use the language suggested by
such geometrical considerations.

56. Linear combinations

We shall say, whenever z = Y ; a;z;, that z is a linear combination of
{z:}; we shall use without any further explanation all the simple gram-
matical implications of this terminology. Thus we shall say, in case z
is a linear combination of {z;}, that z is linearly dependent on {z;}; we
shall leave to the reader the proof that if {z;} is linearly independent,
then a necessary and sufficient condition that z be a linear combination
of {z;} is that the enlarged set, obtained by adjoining z to {z;}, be linearly
dependent. Note that, in accordance with the definition of an empty
sum, the origin is a linear combination of the empty set of vectors; it is,
moreover, the only vector with this property.

The following theorem is the fundamental -result concerning linear
dependence.

TaeorEM. The set of son-sero woclors Z1, - -, Tn 15 linearly dependent
if and only if some zx, 2 S k = n, 1s a linear combination of the preceding
ones. :

. PrROOF. Let ussuppose that the vectors 2y, - - -, za are linearly dependent,
and let k be the first integer between 2 and n for which z,, - - -, z; are linearly
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dependent. (If worse comes to worst, our assumption assures us that
k = n will do.) Then '
: ary +---+ apxe = 0

for a suitable set of a’s (not all zero); moreover, whatever the o’s, we can-
not have ap = 0, for then we should have a linear dependence relation
among z, - -+, Tx—1, contrary to the definition of k. Hence

—ay — Qg1
=—un++---+
o g

Tk—1

as was to be proved. This proves the necessity of our condition; sufficiency
is clear since, as we remarked before, every set containing a linearly de-
pendent set is itself such.

§ 7. Bases

DEerFIntTION. A (linear) basis (or a coordinate system) in a vector space

U is a set &« of linearly independent vectors such that every vector in

U is a linear combination of elements of . A vector space U is finite-

dimenstional if it has a finite basis.

Except for the occasional consideration of examples we shall restrict
our attention, throughout this book, to finite-dimensional vector spaces.

For examples of bases we turn again to the spaces ® and €". In @,
the set {z,}, where z,({) =", n =0, 1, 2, ..., is a basis; every poly-
nomial is, by definition, a linear combination of a finite number of z,.
Moreover @ has no finite basis, for, given any finite set of polynomials,
we can find a polynomial of higher degree than any of them; this latter
polynomial is obviously not a linear combination of the former ones.

An example of a basis in @" is the set of vectors z;, 2 = 1, - - -, n, defined
by the condition that the j-th coordinate of z; is §;;. (Here we use for
the first time the popular Kronecker §; it is defined by 8;; = 1 if ¢ = j and
8;; = 0if ¢ j.) Thus we assert that in @* the vectors z; = (1, 0, 0),
ze = (0, 1, 0), and 23 = (0, 0, 1) form a basis. It is easy to sce that they
are linearly independent; the formula '

z = (&1, &9, &3) = E121 1 E9ma 1+ &3

proves that every r in €3 is a linear combination of thern.
In a general finite-dimensional vector space U, with basis {x1, - - -, Za},
we know that every z can be written in the form

_ z = D ita
we assert that the ¢’s are uniquely determined by z. The proof of this
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assertion is an argument often used in the theory of linear dependence
If we had * = D _;7:;, then we should have, by subtraction,

ED (& — n9)z; = 0.

Since the z; are linearly independent, this implies that # — 5; = 0 for
¢t =1, -++, n; in other words, the #’s are the same as the »’s. (Observe
that writing {z;, - - -, z,} for a basis with n elements is not the proper thing
to do in case n = 0. We shall, nevertheless, frequently use this notation.
Whenever that is done, it is, in principle, necessary to adjoin a separate
discussion designed to cover the vector space ©. In fact, however, every-
thing about that space is so trivial that the details are not worth writing
down, and we shall omit them.)

THEOREM. If U 18 a finite-dimensional vector space and if {y1, ***, Ym)
18 any set of linearly independent vectors in *V, then, unless the y’s already
form a basis, we can find vectors Ym41, - -, Ym+p S0 that the totality of the
y’s, that s, {yl; Sty Ymy Ymgry 0y yﬂ-H’}; 18 a basis. In other words, every
linearly independent set can be extended to a basts.

PROOF. Since ‘U is finite-dimensional, it has a finite basis, say {z1, -+,
z,}. We consider the set 8 of vectors

Y1, ":: ﬂ-’ Ty, *°*y Ty

in this order, and we apply to this set the theorem of § 6 several times in
succession. In the first place, the set $ is linearly dependent, since the
y’s are (as are all vectors) linear combinations of the z’s. Hence some
vector of 8 is a linear combination of the preceding ones; let z be the first
such vector. Then z is different from any y;, ¢ = 1, ---, m (since the
y's are linearly independent), so that z is equal to some z, say z = z;.
We consider the new set 8’ of vectors

Yiy "y Umy Z1y *°°y Ti—1y Tig1y *°°, Tn.

We observe that every vector in U is a linear combination of vectors in
§’, since by means of y;, -+, Ym, 21, - - -, Zim1 W MAy express z; and
then by means of z;, « ++, z;_y, Z;, Z;44, - * -, Z» We may express any vector.
(The z’s form a basig.) If 8’ is linearly independent, we are done. If
it is not, we apply the theorem of § 6 again and again the same way till
we reach a linearly independent set containing y;, -, Ym, in terms of
which we may express every vector in V. This last set is a basis containing
the y’s.



