Lecture Notes in

Mathematics

Edited by A. Dold and B. Eckmann

1019

Cabal Seminar 79-81

Proceedings, Caltech-UCLA Logic Seminar 1979-81

Edited by A.S. Kechris, D. A. Martin and Y. N. Moschovakis

o

SpringerVerlag
Berlin Heidelberg New York Tokyo



Lecture Notes In
Mathematics

Edited by A. Dold and B. Eckmann

1019

Cabal Seminar 79-81

Proceedings, Caltech-UCLA Logic Seminar 1979-81

Edited by A. S. Kechris, D. A. Martin and Y. N. Moschovakis

SpringerVerlag
Berlin Heidelberg New York Tokyo 1983



Editors

Alexander S. Kechris
Department of Mathematics, California Institute of Technology
Pasadena, California 91125, USA

Donald A. Martin

Yiannis N. Moschovakis

Department of Mathematics, University of California
Los Angeles, California 90024, USA

AMS Subiject Classifikations (1980): 03 EXX, 03 DXX, 04-XX

ISBN 3-540-12688-0 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-12688-0 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1983
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2146/3140-543210



Lecture Notes in Mathematics

For information about Vols. 1-817, please contact your book-
seller or Springer-Verlag.

Vol.818: S. Montgomery, Fixed Rings of Finite Automorphism Groups
of Associative Rings. VII, 126 pages. 1980.

Vol. 819: Global Theory of Dynamical Systems. Proceedings, 1979.
Edited by Z. Nitecki and C. Robinson. IX, 499 pages. 1980.

Vol 820: W. Abikoff, The Real Analytic Theory of Teichmuller Space
VIl. 144 pages. 1980.

Vol. 821: Statistique non Parametrique Asymptotique. Proceedings,
1979 Edited by J.-P. Raoult. VII, 175 pages. 1980.

Vol. 822: Séminaire Pierre Lelong-Henri Skoda, (Analyse) Annees
1978/79. Proceedings. Edited by P. Lelong et H. Skoda. VIl
356 pages, 1980.

Vol. 823: J. Kral, Integral Operators in Potential Theory. Ill, 171
pages. 1980.

Vol. 824: D. Frank Hsu, Cyclic Neofields and Combinatorial Designs.
VI, 230 pages. 1980.

Vol. 825: Ring Theory, Antwerp 1980. Proceedings. Edited by F. van
Oystaeyen. VII, 209 pages. 1980.

Vol. 826: Ph. G. Ciarlet et P. Rabier, Les Equations de von Karman.
VI, 181 pages. 1980.

Vol. 827: Ordinary and Partial Differential Equations. Proceedings,
1978 Edited by W. N. Everitt. XVI, 271 pages. 1980.

Vol 828: Probabulity Theory on Vector Spaces Il. Proceedings. 1979.
Edited by A. Weron. XIIl, 324 pages. 1980.

Vol. 829: Combinatorial Mathematics VII. Proceedings, 1979. Edited
by R. W. Robinson et al.. X, 2566 pages. 1980.

Vol. 830: J. A. Green, Polynomial Representations of GLp. VI, 118
pages. 1980.

Vol. 831: Representation Theory |. Proceedings, 1979. Edited by
V. Dlab-and P. Gabriel. XIV, 373 pages. 1980.

Vol. 832: Representation Theory Il. Proceedings, 1979. Edited by
V. Dlab and P. Gabriel. XIV, 673 pages. 1980.

Vol. 838: Th. Jeulin, Semi-Martingales et Grossissement d'une
Filtration. IX, 142 Seiten. 1980.

Vol. 834: Model Theory of Algebra and Arithmetic. Proceedings,
1979. Edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie. Vi,
410 pages. 1980.

Vol. 835: H. Zieschang, E. Vogt and H.-D. Coldewey, Surfaces and
P' nar Discontinuous Groups. X, 334 pages. 1980.

ol. 836: Ditferential Geometrical Methods in Mathematical Physics
Froceedings, 1979. Edited by P. L. Garcia, A. Pérez-Rendon, and
J. M. Souniau. XIl, 538 pages. 1980.

Vol. 837: J. Meixner, F. W. Schafke and G. Wolf, Mathieu Functions
and Spheroidal Functions and their Mathematical Foundations
Further Studies. VII, 126 pages. 1980.

Vnl. 838: Global Differential Geometry and Global Analysis. Pro-
ceedings 1979. Edited by D. Ferus et al. XI, 299 pages. 1981.

Vol. 839: Cabal Seminar 77 - 79. Proceedings. Edited by A. S
Kechnis, D. A. Martin and Y. N. Moschovakis. V, 274 pages. 1981.

Vol. 840: D. Henry, Geometric Theory of Semilinear Parabolic Equa-
tions. IV, 348 pages. 1981.

Vol. 841: A. Haraux, Nonlinear Evolution Equations- Global Behaviour
of Solutions. XII, 313 pages. 1981.

Vol. 842: Séminaire Bourbaki vol. 1979/80. Exposés 543-560.
IV, 317 pages. 1981.

Vol. 843: Functional Analysis, Holomorphy, and Approximation
Theory. Proceedings. Edited by S. Machado. VI, 636 pages. 1981.

Vol. 844: Groupe de Brauer. Proceedings. Edited by M. Kervaire and
M. Ojanguren. VIl, 274 pages. 1981.

Vol 845. A Tannenbaum. Invanance and System Theory: Algebraic
and Geometric Aspects. X. 161 pages. 1981

Vol. 846: Ordinary and Partial Differential Equations, Proceedings
Edited by W. N. Everitt and B. D. Sleeman. XIV, 384 pages. 1981.

Vol. 847: U. Koschorke, Vector Fields and Other Vector Bundle
Morphisms - A Singularity Approach. IV, 304 pages. 1981

Vol. 848: Algebra, Carbondale 1980. Proceedings. Ed. by R. K
Amayo. VI, 298 pages. 1981

Vol. 849: P. Major, Multiple Wiener-Ité Integrals. VII, 127 pages. 1981.

Vol.850: Séminaire de Probabilités XV.1979/80. Avectable génerale
des exposés de 1966/67 a 1978/79. Edited by J. Azéma and M. Yor
IV, 704 pages. 1981.

Vol. 851: Stochastic Integrals. Proceedings, 1980. Edited by D.
Williams. IX, 540 pages. 1981.

Vol. 852: L. Schwartz, Geometry and Probability in Banach Spaces.
X, 101 pages. 1981.

Vol. 853: N. Boboc, G. Bucur, A. Cornea, Order and Convexity in
Potential Theory: H-Cones. IV, 286 pages. 1981.

Vol. 854: Algebraic K-Theory. Evanston 1980. Proceedings. Edited
by E. M. Friedlander and M. R. Stein. V, 517 pages. 1981.

Vol. 855: Semigroups. Proceedings 1978. Edited by H. Jurgensen.
M. Petrich and H. J. Weinert. V, 221 pages. 1981.

Vol. 856: R. Lascar, Propagation des Singularités des Solutions
d'Equations Pseudo-Différentielles a Caractéristiques de Multipli-
cites Variables. VI, 237 pages. 1981.

Vol. 857: M. Miyanishi. Non-complete Algebraic Surfaces. XVIII,
244 pages. 1981.

Vol.858: E. A. Coddington, H.S. V. de Snoo: Regular Boundary Value
Problems Associated with Pairs of Ordinary Differential Expressions.
V, 225 pages. 1981.

Vol. 859: Logic Year 1979-80. Proceedings. Edited by M. Lerman,
J. Schmerl and R. Soare. VI, 326 pages. 1981.

Vol. 860: Probability in Banach Spaces lll. Proceedings, 1980. Edited
by A. Beck. VI, 329 pages. 1981.

Vol.861: Analytical Methods in Probability Theory. Proceedings 1980.
Edited by D. Dugué, E. Lukacs, V. K. Rohatgi. X, 183 pages. 1981

Vol. 862: Algebraic Geometry. Proceedings 1980. Edited by A. Lib-
gober and P. Wagreich. V, 281 pages. 1981.

Vol. 863: Processus Aléatoires a Deux Indices. Proceedings. 1980
Edited by H. Korezlioglu, G. Mazziotto and J. Szpirglas. V, 274 pages
1981.

Vol. 864: Complex Analysis and Spectral Theory. Proceedings
1979/80. Edited by V. P. Havin and N. K. Nikol'skn, VI, 480 pages
1981.

Vol. 865: R. W. Bruggeman, Fourier Coefficients of Automorphic
Forms. Ill, 201 pages. 1981.

Vol. 866: J.-M. Bismut, Mécanique Aléatoire. XVI, 563 pages. 1981.

Vol. 867: Séminaire d'Algébre Paul Dubreil et Marie-Paule Malliavin.
Proceedings, 1980. Edited by M.-P. Malliavin. V, 476 pages. 1981.

Vol. B68: Surfaces Algébriques. Proceedings 1976-78. Edited by
J. Giraud, L. lllusie et M. Raynaud. V, 314 pages. 1981.

Vol.869: A.V. Zelevinsky, Representations of Finite Classical Groups.
IV, 184 pages. 1981.

Vol. 870: Shape Theory and Geometric Topology. Proceedings, 1981.
Edited by S. Mardesi¢ and J. Segal. V, 265 pages. 1981.

Vol. 871: Continuous Lattices. Proceedings, 1979. Edited by B. Bana-
schewski and R.-E. Hoffmann. X, 413 pages. 1981.

Vol. 872: Set Theory and Model Theory. Proceedings, 1979. Edited
by R. B. Jensen and A. Prestel. V, 174 pages. 1981

continuation on page 285



<t Yl

- Arabic proverb

INTRODUCTION

This is the third volume of the proceedings of the Caltech-UCLA Logic Seminar,
based essentially on material presented and discussed in the period 1979-1981. The
last paper "Introduction to Q-theory" includes some very recent work, but it also
gives the first exposition in print of some results going back to 1972.

Papers 5-10 form a unit and deal primarily with the question of the extent of
definable scales.

Los Angeles Alexander S. Kechris
May 1983 Donald A. Martin
Yiannis N. Moschovakis
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MORE SATURATED IDEAIS

Matthew Foreman
Department of Mathematics
University of California

Los Angeles, California 90024

In this paper we prove three theorems relating the consistency strengths of
huge cardinals with saturated ideals on regular cardinals and with model theoretic
transfer properties.

We prove:

Theorem. Con (ZFC + there is a 2-huge cardinal) = Con (ZFC + for all m, n ¢ w
with m> n, (xml,xm) - (&ml,xn)).

Theorem. Con (ZFC + there is a huge cardinal) = Con (ZFC + for all n € w,
there is a normal, xn-complete, Rm_l-saturated ideal on Rn + there is a normal,

xw—kl - complete, Rw_'_g-saturated ideal on Ruﬂ-l)'

The theorem above contains all the new ideas necessary to prove the following

theorem:

Theorem. Con (ZFC + there is a huge cardinal) = Con (ZFC + every regular

cardinal k carries a k'-saturated ideal).

We now make same definitions: ILet &£ be a countable language with a unary
predicate U. A £-structure U is said to have type (k,\) iff |91| = k and
|le| =X If k> k', A> X' we say that (k,\) » (k',\') iff every structure
% of type (k,\) has an elementary substructure B <% of type (k',\').

An ideal Jc P is said to be Q-camplete iff whenever {x7 : 7<Blc I and

p<a, U X,ed. Aset Ac P(k) 4is said to be positive if A £ d. I is
7<p
normal iff for every positive set A C k and every regressive function f defined

on A there is a B € k such that f{a : F(@) = B} is positive. I is said to be
A-saturated iff it is normal and ©(k)/d has the A-chain condition. (We will
never consider "non-normal" saturated ideals.) There is an extensive literature on
saturated ideals. (See [6], [7].)

let jJ : V+ M be an elementary embedding from V into a transitive class M.
Let Ko be the critical point of j (i.e. the first ordinal moved by ), Let
Kipl = J(Ki). We will call j an n-huge embedding and Ko an n-huge cardinal
iff M is closed under k -sequences. (This means that if (xa ra< nn) C M then

This research was partially supported by NSF Grant No. MCS 78-02983.



(xo t Q< Kn) € M.) An almost n-huge embedding is an embedding j as above that

is closed under < Kn—sequences, i.e. if B < K and (xa : a< B) C M then

(xa : @< B) € . We will use the notation "crit(j)" for the critical point of j.
If «k and j 1is at least an almost huge embedding, then Jj induces

0 1
a supercompact measure on PK(X). In particular Jj induces a normal measure on k.

< A< k

Proposition 1. ILet Jj be an n-huge embedding. Iet U be the measure on «
induced by j. Then there is a set A of measure one for U such that for all
a and B € A, there is an almost n-huge embedding J such that the critical

a,B
point of JaB is o and j_ _(a) = B.
t]

QB

Proof. This is a routine reflection argument.
We will now precisely state the theorems we will prove:

Theorem 1. Con (ZFC + there is a sequence of huge embeddings (,jn :new)
with ,jn(critica.l point of jn) = critical point of ‘jn+l) = Con (ZFC + for all
m,new m>n implies (&m-l’xm) » (R, 158 )).

Theorem 2. Con (ZFC + there is a sequence of almost huge embeddings
(J'n :new) with ,jn(critical point of jn) = critical point of jm—l) =
Con (ZFC + for all n € w there is a normal, Rn-complete, R m_l-saturated ideal

on Rn) ‘

Theorem 3. Con (ZFC + there is a huge cardinal) = Con (ZFC + R 41 cerries a
normal N w+2-saturated ideal and for all n € w, Rn carries an ¥ ml—saturated
ideal.)

We will assume that the reader is familiar with iterated forcing. (See [1]
for a very good exposition.) All of our partial orderings IP will have a unique

greatest element, 1 Our notion of "support" will be the standard one and if p

°
is a condition in an iteration we will write "supp p" for its support. For the

inverse limit of a system (Pi ;i e I) we will write Lim <Pi :ieI). Wewill
also use the notion of support for products of partial orderings. If (Qi :1ie1)
is a collection of partial orderings, we let H(Qi :ieI)={f| £ is a function
with damain I and for all i eI £(i) ¢ Qi]. The product H(Q,i :ieI) is
ordered coordinatewise. If p € H(Qi :1ieI), then supp p= {i: p(i) # 1Q.}'
If ¥ c P(I) is an ideal then I (@ :ieT)={fell(q : iec1) a

supp P € ¥
supp £ € ¥}. ...
VQO*Ql* *Q

If (Qi : 1 e w) is a sequence of terms such that Q1 € , we

n

write * Q. for the finite iteration QO * Q, ¥ cee x Qﬂ. If S is a partial
i=0 T .

ordering with a uniform definition, we will use S]P to denote the partial ordering

S defined in V’IP. To simplify notation, we will write 1IP *S tomean TP * SIP.



If P 1is a partial ordering we will use ﬁ(IP) to denote the canonical
complete poolean algebra obtained from IP. If Cp(él,...,‘t.:n) is a formula in the
forcing language of IP we will use ”q)('El""’én)”IP to denote the boolean value
of <p(1':l,...,'En) in R(P). For p, q € P, we will use the notation p A g, and
PV aq tobe the meet and join of p and gq in @R(IP). Similarly — p will denote
the complement of p in R(IP). If b e 8(P), we will say that p "decides" b
(in symbols p || b) iff p< b or p<-b. We will write p fb if p < b.

We define C(k,7) = {({p | p:x» 7, |p] <k}, 2). C(x,7) is the partial
ordering appropriate for making oy have cardinality k. We will call this the Levy
collapse. Similarly, we will define the Silver collapse S(K,)\.) by p e 8(k,)) iff

(&) p:Axk- 2

(®) lpl <&

(c) there isa t<k, dmpc AX ¢

(@) forall a<k, 7<2A Pha)<7
S(k,\) is ordered by reverse inclusion: Standard arguments show that for inacces-
sible A, S(k,\) makes X into «™.

If 77 <7, and k< 7', C(k,?7') 1is a subset of C(k,?). If p e C(k,7),
we define p N C(k,7') to be q, where domq= {a<«k : Pl@) < 7'} and for each
a e dan g, g(@) = p(@). It is easy to see that p N C(k,7') € C(k,7'). If
r e C(k,7') and p e C(k,”) then r is compatible with p in C(k,7) iff r is
compatible with p N C(k,7'). If p e C(k,7), we define sup p to be
sup {p(@) + 1 : @ € dom p}.

We will write @ for a finite sequence of ordinals. If QpsQqseeerq, are
mentioned in connection with & we will assume that o = (« ,al,...,an).

If k and X are cardinals, with k <X and x, y € PK(X) =f{zcx: lz] < &)
then we write x <y 1iff xcy and the order type of x is less than the order
type of yN k. If x ¢ PK(X), let crit(x) = order type of x N k.

If B and C are complete Boolean algebras and 7T : R - C is an order
preserving function, 7 is called a projection map if whenever G c 8 is generic,
T'G < C 1is generic.

et P and Q be partial orderings. If i : IP #+ Q is a one to one, order
and incompatibility preserving function with the property that whenever AcC P is
a maximal antichain, i"A € Q is a maximal antichain, then we say that i is a
neat embedding from IP into Q, and write i : IP<— Q). Standard theory says
that if 1 : IP<“—= Q is a neat embedding then there is a projection map
T : B(Q) » B8(P) such that for all p e P, 7(i(p)) = P.

If e: Q= P and S € VQ is a partial ordering we define 1IP *g S to be
the iteration with amalgam e"Q. (See [2] for this definition.)
If P 1is a partial ordering and p ¢ IP, then IP/p is defined to be

{a : q <p}.



§1. 1In this section we prove Theorems 1 and 2. We begin by mentioning

theorems of Magidor and Kunen that we will use extensively in this paper.

Theorem (Kunen [7]) Let j : V-+ M be a huge embedding. Suppose IP' x Q
is a forcing notion such that

() P is Kk, c. c.

0
(b) @ is ky-closed in vE
(e) |®']=rkp [P xal=rx

(d) there is a projection map T : B(j(TP')) » B(P' * Q) and a
g € J(P') » j(Q) such that for all r e j(P') * j(Q), r < q implies
j(m(r))>r [If r= (ro,rl) with 1, e j(P'), we take m(r) = 'lT(ro)]

1]
then in VIP * Q:

(1) ko carries a normal, k

(1) (lsg)srg) » (xgs < Ko)

0-ccmplete, ,j(no)—saturated ideal

Magidor and others have commented that to get a normal no-ccmplete,
;j(no)-saturated ideal on Ko» it is enough to have J be almost huge and replace
(a) vy:

(d') there is a neat embedding i : B(PP' * Q) - 8(J(P')) .

We shall need the following preservation lemmas.

Lemma 1. Let X be a regular cardinal. Suppose IP is X c. c. and Q is
A~closed. (We do not rule out P = {#].)

(a) If k<X and k carries a normal A-saturated ideal in V]P, then «
carries a normal X-saturated ideal in V]PXQ.
(b) If X <)X, 7<k<X and (M,XA')» (k,7) in V, then

A1) » (k,7) in V2.

Proof. Since P is Ac. c., Q is (\,®)-distributive in V. Thus,
if 9 is a normal A-saturated ideal on k in VJP, J remains a normal ideal
in VE(Q. We must show that J remains A-saturated in (V]P)Q. Suppose not.
Let (o, : @ <)) be terms in vP9  for an antichain. We will build a
descending s;;;uence (qa s a< ) c Q in V with the property that there is a

_ vIP _ . .
term Ta eV such that “th Q % = (Toz) ”IP = 1. We do this by induction on a.

Let 4 = 10. "
Assumi we have defined {qB : B<al. Let 9, < {qB : B <a}. There is

such a qq because @ < A and Q is X-closed. We will simultaneously build

{qé : 7<7,}cQ and an antichain [p7 : 7 <7,} € P. These will have the

property that for each 7> there is a term T; € V'IP such that

A . 7 _
(py,qa) Hﬁ Oy = (Ta) . Assume we have built (qa : 7 <¢t) and (;o7 17 <¢E)
with the above property. Note that & < A since IP has the A-chain condition.

If (p7 : 7 < t) is not a maximal antichain, pick Pg’ qé such that

P
qé < (qé : 7 < t) and for some Té 3 VIP, (pg,qé) HIB<_Q (Té)v = o, and r,



is incompatible with each p7, 7y < E.
Since IP has the X c. c., for some £ < A, (py : 7 < E) is a maximal anti-
. 7. P 7 _
chain. Let a, < (qa : y< t) and T &V be such that D, [ To, = Ty Then

lag by ()7 = ogllp= 1. .

In V]P, (g : @< 7) identifies a sequence (T, : a<\)c (P(K))V . If
@< B <A then qg HQ BTN p €I and To Tg £ 9 But "I, N Ty ed and
"T, £ J" is absolute between vE ana vPQ,  Hence in VJP, (Ta <\ is
an antichain of size A in P(k)/d, a contradiction.

(b) Let U= (X;X',fi)iew be a fully skolemized structure of type (A,A')
in VQ'. Using the X-closure of Q, in V we can find a sequence
(pa :a<A)cQ anda stmiture A = <>\;>L',fi)i€w such that f} are defined
on all of A and for each B ¢\’ and each i there is an a < A
By o fi(E)) = £1(F). Let B<U' De of type (k,7). Since k<X and X is
regular there is an « such that for all B ¢ B, Py (8 fi(E) = f'(f?). But then
Py b8 is closed under all of the fi's.

Hence P, F 3<v.

A partial ordering IP will be called k-centered iff there is a collection
{Cuiax< k] of disjoint subsets of IP such that
() = U ¢
a<k n
(v) 1If Pyse-->P € C, then 121 p; # 0.
In particular, if IZIPI <k, IP 1is k-centered.

a

Lemma 2. Let & be a k''-saturated ideal on & . Suppose 1P is a

+

k-centered partial ordering. Then J generates a normal k' -complete, nH-

saturated ideal in V]P.

(Laver has proven stronger results unknown to the author at the time this work

was done. See [8].)

Proof. IP is manifestly K+-C. c. Hence J remains K+-ccmplete and

normal. We need to see that J is K'H-sa.tu.rated. Let ()'(a ca< K'H') be a
term for an antichain of size KH. Let {Ia,ﬁ = ).(a n ].([5 Then Qoz,B € V]P and

IIE.{a p.€ J|l = 1. (Here we are using J to stand for the ideal generated by J
bl

in VIP.) Hence, for each pair «, B

I3¥ev(ves ama v, ,cy)f=1.

B

. : + < + . 2
Since P is k -c. c. and J 1is &k -complete, there is a sequence in V,

. ++ ‘: .
(Ya’ﬁ.a<B<K )cJd and Hxanxagya,au 1



For each on and each 7 < k, let X y = {¢ I there is a p € Cy,
’
Pl ee Xa]. Since ||X c U X H =1 and J is K+-ccmplete, there must be
7<k

some 701 with Xa ,7 ﬁ J. By the pigeon-hole principle, there is a set S C wHt,
a

S eV with |[s] = such that for all o, B €8, 7, =7, Fix sucha set S
and such a 7. We claim that if « € S then X n .
» B 70 %8,7 € Yap

Let ¢ € X ﬂ . Since C7 is a collection of compatible elements we

7
can find a qu qﬁ-gexynxay But then qu-geYﬁ. Hence
E € Y . We now derive our contradiction: (Xa y - 30 - S) is a set of positive
elements of P(k*) with respect to J and if @, B S, a# B,
s : ++
5’7 (= a,B € J. Hence (Xa,7 : @ € 8) are an antichain of size & in
the ground model, a contradiction.

The following lemma is standard (see [6]).

Lemma 3. Suppose A' < k' < A< k are regular cardinals and IP has the
K Ce Co
(a) If (k,A) » (k',\') then in V (k,A) » (k',A")
(b) If k carries a kt-saturated ideal J, then in V]P, J is a
kT -saturated ideal.

Ir
]

Let (;]n : n €w) be a sequence of huge embeddings. Let Ky = crit(;jn) and
suppose jn(Kn) = k- Suppose (]Rn: n € w) is a sequence of terms for partial
n

* R.

Zo i
orderings with IR - € Vi"O such that n
n * R
(a) = Ry has the k -chain condition and in ol g ; is K -closed
120 n I+ n
* R
*
i=0 71 ;
(b) In V , forall i<n Kk, =Ry,
n
x By
(¢) In e R has cardinality «
4 w1 n+l® n n
(d) For each n, there is a projection map T : j (* R )-0 * Ry* R
" i=0 i=0
and a condition q € Jn(;i:o ]Ri) * Jn(]Rm_l) such that for all r < q,
n n
rej (* R, )* J (Jle), 3 (TT(r))> r. (i.e. if IP' = = R; and Q= R,
i=0 i=0
then IP' and Q satisfy the hypothesis (d) in Kunen's Theorem.)
ml
= P
Let P = lim { % JRi :n e w). By Kunen's Theorem, in V there is
i=0

K, -saturated ideal on k= and (Kn-l-l’nn)-” (Kn,nn_l). (Let K_1=Rl.) But

nl
v/ i-:0 R, is Km_l-closed. Hence by Lemma 1 in V
m>n>0 (R, %)% (Rn-i-l’xn) and R carries a normal R -complete

r
, forall m, n € w,



Ml-saturated ideal.
BxC(R5R,)
By Lemmas 2 and 3, in V for a1l my, n € w, m> n,

(&m—l’%) -+ (Rn-i-l’xn) and Rm carries an RE-canplete R, ,-saturated ideal.

We will now concentrate our attention on building the R's. The construction
given here is considerably simpler than our original one at the expense of intro-
ducing somewhat more technicality. The next few definitions and lemmas explore
these technicalities.

Lemma 4. Iet TP and Q be partial orderings. Suppose T : P+ Q has
the properties:
(1) p, <p, implies 7(p,) < 7(p,)
(2) for all p € P there is a q < M(p) such that for all q' < q there
is a p' <p such that w(p') <gq'.

—Tr> ’]T(p)

vl
Vi Vi

vi
™
p' ——— 7(p')

Then T 1is a projection map.
Proof. This is standard.

Definition (Iaver). ILet IP be a partial ordering and Q € ad be a term
for a partial ordering. We define the termspace partial ordering Q* to be the
following partial order:

r

dam Q@* = {T : T e V" and ||T€Q”P=l and for

all T' ¢ VT, 4f rank(7') < rank(T)

then |t' = T”]P # 1} .
For T, T' e dom Q,

T< T iff v <

_Q* T'”]P=l-

Q

(Technically we want to take the universe of Q* to be equivalence classes of
terms modulo the relation T, ~ T, iff HTl =

1 > = 1. In practice we ignore
this distinction.)

Tolp



The main use of the termspace partial ordering is summed up by:

Lemma 5. (a.) Let Q € VJP be a term for a partial ordering. There is a

projectionmap T : IP X Q% » IP % Q

(b) Let (Qi :iew) c V]P be terms for partial orderings. Then there is
a projection map

* VIP
m: Px ] (Qi) — Px (I Qi)
iew iew

(¢) 1t (Qi :ie w), (IPi :iew) are two sequences of partial orderings
and for each i e w CPi 3 Qi -+ IPi is a neat embedding, then there is a
o: I Q - I P, extending each O,.

iew iew

Proof. (a) Define T as follows: If (p,T) € IPx Q*, let
m(p,T) = (p,T) € P * Q. We want to apply Lemma 4. It is enough to see that if
(p,7) e Px @ and (q,0) e P* Q@ with (q,0) 5PQ
such that (q,o') < Begr (p,7) and (q,0") <mag (g,0). Fix (p,T) € IP x @* and
(a,0) e P* @ with (q,0) <o (p,T). Let o' be a term of minimal rank such

(p,T) there is a o' e Q*

that ”cr' = a” > q and ”0' = T” > - q. Then gq H— o' < o, hence
]P e — _
(a,0") < B (4,0). Also = q< llo' = 7l, hence qvVv (nq) < o' <7l so
1 g
lor <tll=1 anda (q,0') -<—]B<Q*
The proof of (b) is similar and (c) is standard.

(p,T) as desired.

If Q is in vE we will use the notation A(IP;Q) for the termspace
partial ordering.
We now make a definition we will use to get an easy hold on the chain condition

of the termspace partial ordering.

Definition. (a) Iet IP and Q be partial orderings. Q 1is said to be
representible in IP iff there is an incompatibility preserving map i : Q » IP.
(i.e. if q and q' are incampatible in Q, i(q) and i(q') are incompatible
in IP.)

(b) Let F(P,8) be the partial ordering with domain

{f| £f:P+S and f is order preserving}
The ordering of &(P,S) is f < g iff forall p e P f(p) < g(p).

If Q is representible in IP then the chain condition of IP gives an

upper bound on the chain condition for Q.

Example. (a) Let TP and S be partial orderings and I S be the
pelP
product of |IP| copies of S, one for each element of IP. Then J(IP,S) is



representible in i S, namely map f ¢ H(P,S) to g ¢ I s where g has
pelP th pelP
the value f(p) on the p copy of S.
(b) Let P bea kc.c. partial ordering. Let S]P(K,X) be the Silver
collapse of A to k% defined in V]P. Let S(k,\) be the Silver collapse of
A to k¥ defined in V. Then (S]P(K,X))* is representible in 3J(IP;S(k,\)):

Define a map i : (SIP(K,X))* + J(P;8(k,\)) by i(t) = £ where
£:(p) = (@87 = p f T(axp) = 71 .

Using the k c. c. of P we see that IfT(p)| < k. Further, p } £.(p) € S]P(K,X),
so there is a ¢t < k such that dom fT(p) S Ax & Hence f.(p) e S(k,A). If
PSIPP' and p' f T(a,p) = ¥ then p f T(2,B) = 7. Thus f, is order
preserving and f_ e ¥ ®,s).

We must see that i preserves incompatibility. Let T, T' € (SIP(K,X))*,

T and T' incompatible. Then there is a p € 1P,

P H'IP T and T' are incompatible in SIP(K,X) .

Pick p'<p, 7#7', P F T(@p)=7 and p' F 7'(2,B) = 7'. Then £ (p') is
incompatible with f,r,(p'), and hence f_ is incompatible with f_,.

(In fact if || = & it is possible to see that
(S]P(K,x))* = ({f | f: P>+ S(xk,\), f is order preserving and there is a ¢ < k
U_ dom £(p) € A X t}. We leave this to the reader.)

1f qeVh and [Q is A-closed|p =1 amd (T, :a<B) (B<)) isa
descending sequence in Q* then |[there isa T eQ, T < T, for all a”IP = 1.
Let T be a term for an element of Q such that for each a [T < Ta”IP = 1.
Then T SQ* C:I);<né‘ T, Hemce Q* is A-closed.

Iema 6. Let R ¢ VIE*Q be a term for a partial ordering. Then
A(P;A(Q;R)) ~ A(TP * Q;R).

Proof. If T e A(P;A(Q,R)) let m(T) ¢ A(P » Q;RR) be a term T* such

P .Q
that |Jx = ((7)V )Y | peq = 1+ We verify that T is an iscmorphism. T is
clearly order preserving. Suppose T, o e A(P;S(Q;R)), [T = U”IP # 1. Let
peP, phlk T#0 in A(Q;R). Pick quJP, la € all > p,

vE v@ vE 0
Pk @k ((0)" ) # ((6) ) ). Then (p,q) e P+ Q and (p,q) f ™ #o*.
Let T* ¢ V]P*Q, ”T* € IR”]HQ =1l., In V]P, there is a term T for an element

of VE*Q  gsuch that || |t = ™y = 1lp=1. Then mr) = T*.

The following lemma is standard.
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Lemma 7. Let A be a measurable cardinal. Let «a < A and (]P7 : Y <)

be a sequence of A-c. c. partial orderings. Then I {IP, : <A}  has
Q supports
the X c. c. ("o supports” denotes the ideal of subsets of A with cardinality

<a)

We will be interested in constructing partial orderings with nice embedding
properties. We make the following definition, which is similar to one that will
appear in [3].

Our partial orderings will be in the form R(k,\) for all regular k> w
and all measurable A > k. IR is the uniform definition given below.

If A 1is greater than the first measurable above k, the partial ordering
R(k,\) will be the product II Sn(K,)L) for partial orderings Sn(K,)\) defined
inductively. new

Assume that we have defined ]R(B,Ot) for all regular B, wW<p <o and
all measurable « < A. We now define I R(B,\).

Case 1. A is the first inaccessible above B. Let IR(B,A) = S(B,\) = the
Silver collapse of A to B%.

Case 2. Otherwise.

By induction on n, we define Sn(a,k) for all regular @, P <a< A We
will have a uniform definition of Sn(a,K) no matter which model we define it in,
hence we define it only in the ground model. (Sn(Ot,X))V:IR Pty is the partial
ordering constructed in V]R(B’a)

If n=0:

using this definition.

Let so(a,x) = 8(a,)\) = the Silver collapse of A to of .

Assume that we have defined Sn(a,X) for all regular Q.
For n+ 1:

Let s’”l(a,X) = I {A(]R(a,7);sn(7,X)) :a<7<X and 7 is measurable}.
a supports

Lemma 8. For all regular B > w and all measurable XA, R(B,\) is A-c. c.
and has cardinality X. (In fact X Mahlo works but we leave this to the reader.)

Proof. By Lemma 7, it is enough to see that each Sn(B,X) has the X-c. c.

We show by induction on A and n, that for all measurable QyseeesOp
m-1
A(*. R(a,,, .);8™(a,\)) has cardinality A and the X c. c.
i=1 127141 m
Assume that this is true for all A' < A. By our example we know that
m-1 m-1
.0 . * .0 £
A(ie;l IR(ai,Oti+l) ;S (ozm,X) is representible in s(izl m(ai,ai+l) ;S (am,x)). This
in turn is representible in the product of Oém copies of S (am,X). By Lemma 7,
this has the X c. c.



"

1

m-
- n 1

Assume that A(i:l ]R(ai,ai+l),s (Ocm,k)) is A-c. c. for all ag,...,0
measurable. We want that for each al,...,am measurable,

m-1

nml

* . 1 -
A(i=l ]R(Oli,ai+l),s (am,X)) is X-c. c. -
) 1 (o0
Fix such a sequence Otl,...,ocm. In V

i+l)

Sml(am,k) = II {A(]R(am,B);Sn(B,X)) @ <B< A and B is measurable] .
am+l support
) Bl . =il n+l
Since i:1 ]R(ai,ozi+1) has the o -c. c., if t e A(i:l R(ai,ai+1) S (ozm,x))
there is a set Dc A such that [D| = o, and lsupp t < D”m-l = 1.

)
=1 and

121 ]R(ai,oc
For each B € D, we get a term TB such that [[t(B) = Tﬁi“m—l
*
m-1 i=1 ]R(ai’ai+l)
TB e A( ]R(ai,ai+l); (]R(am,s);sn(fs,x))). It is easy to verify that the map
i=1 m-1
T (TB : B e D) is an isamorphism between A( * m(ai,aﬂl);sn"l(am,)»)) and
m-1 i=1
il (A( » R(a,,o, . )3A(R(@ ,B);8™(B,N)) a <B< X\ and B is
2 1271+l m m
ozm supports i=1

measurable}. By Lemma 6,

m-1 m-1
n n
A(i:el R(0,0,, 1) 5A(R(,8)387(B,1))) = A(ia_el R(ay,a,, 1) * R(a ,8)3587(B,1)) -
m-1 n
By the induction hypothesis for n, A( * ]R(ai,ai+l) * ZIR(Otm,B);S (B,\)) has the
m-1 A=l ntl
X c. c. and thus by Lemma 7 A( » R(x,,a. .)3S ~(a,\)) has the X-c. c.
i=1 17741 m
We now establish the properties we need to satisfy the conditions of Kunen's

Theorem:

Lemma 9. For each k > w, k regular and each A measurable:

() T s%(k,\) is «*-closed
new
n>1

(b) T s™k,\) is k-closed
new

(e) If o is measurable and id : R(k,x)— R(k,\) then there is a map o
extending id such that

P : R(k,@) x [ A(R(k,@);8"(a,1))e= R(k,\)
new

(d) 1 id : R(k,@) - R(k,\) then there is a map V¥ extending id,

Vo B(]R(K’a) * ]R(a,K))‘L——’ ﬁ(]R(K’)‘))



