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INTRODUCTION

THE MATHEMATICAL BACKGROUND

In 1949 H. MaaB [Ma 1] extended the classical Riemann-Hecke correspond-
ence between Dirichlet series with functional equation and automorphic
forms. For that purpose he introduced a new class of automorphic func-
tions which are real-analytic on the upper half-plane 1IH, automorphic
with respect to a certain subgroup T < PSL(2,IR) , and satisfy the

wave equation for the Laplacian for the hyperbolic metric on TH
5 2 2
(1) =y (__j + ——§> f = X
]

with some parameter X . These MaaB wave forms turned out to be of key
importance for the subsequent development of the theory of modular
forms and its applications to number theory (see e.g. the survey ar-
ticle [I] by H. Iwaniec, [He 1], [He 2], [He 3], [Ve 1]). In addition,
the MaaB wave forms come up in a natural way jointly with the classical
holomorphic automorphic forms in the representation theory of SL(2,IR)

(see [GGPS], [La]).

The eigenvalue problem (1) was considered by W. Roelcke [Ro 3] and

A. Selberg [Se 1], [Se 2] as an eigenvalue problem of a self-adjoint
linear operator, that is, the Laplacian defined on a suitable domain in
the Hilbert space Lz(T ~ TH) . These researches finally led to the ce-

lebrated Selberg Trace Formula which is a relation between the eigen-

values of A and some data determined by T . For a more detailed ex-

planation of this background we introduce some notations.



A fundamental domain F of I 1is a set of representatives of the or-
bits of T in 1T, measurable with respect to the hyperbolic area
measure . The w-measurable functions f: I —— ¢ such that

feM = £ (M € T) and f|f]2dw < » constitute a Hilbert space

B~ L2(T ~ H), equipped with the scalar product (f,g) = | fgdw .
Since Af is invariant under T whenever f has this prgperty,

A : D — H defines a linear operator on an appropriate domain Dc<c H .
Roelcke has shown in [Ro 1] that A 1is essentially self-adjoint on D.
The key problem now is to determine the spectral decomposition of A
This is called the eigenvalue problem of automorphic forms. Up to now
this problem was solved only for a certain class of Fuchsian groups

of the second kind ([E1], [E2], [E3], [Pa 1], [Pa 2], [Pa 3]). These
groups are not of arithmetic interest, however. The really interesting
class of groups are the finitely generated Fuchsian groups of the first
kind, i.e. the groups T with a fundamental domain of finite hyper-
bolic area. These groups are briefly called cofinite groups. For co-
finite groups the continuous spectrum of A was completely determined
by Selberg [Se 1], [Se 2] and Roelcke [Ro 1], [Ro 2], [Ro 3] in terms
of the analytically continued Eisenstein series. Hence, the main prob-
lems left are concerned with the eigenvalues of A , and these problems
turn out to be of upmost complexity. Not a single example of a cofinite
group is known for which the sequence of eigenvalues can be explicitly
determined. (It is not even clear beyond doubt what one should mean by
an explicit determination of the eigenvalues.) For example, only the
eigenvalue O 1is really explicitly known for the rational modular
group PSL(2,Z), and although much effort was spent in determining the
first eigenvalues numerically on a computer ([He 2], [He 4]), none of
the other eigenvalues for PSL(2,Z) 1is "explicitly known". For arbi-
trary cofinite groups it is not even known whether a single eigenvalue
different from O exists at all. Recent research has even led to the

conjecture that the generic cofinite group has vefy few MaaB wave forms



([pIPS], [pPs 1], [ps 2]), although large classes of arithmetically or
geometrically "nice" groups are known which have infinitely many eigen-
values. The latter class includes of course all cocompact groups. Need-
less to say that our knowledge‘with respect to the eigenfunctions is
still more defective despite some interesting numerical attempts for

PSL(2,Z) (see [St]).

Since precise results on the individual eigenvalues are out of scope
one has to have recourse to asymptotic methods. Asymptotic results on
the eigenvalues can be obtained from the Selberg Trace Formula. This
formula takes its simplest form for cocompact groups. Let us assume
for simplicity for the moment that T < PSL(2,IR) is a cocompact dis-

crete group without elliptic elements, and let

2
= = 1
0 Ao < A1 < Az L wmm kn ity
be the eigenvalues of =-A . Suppose that the function
(2) h: {r € ¢: |Im r| < 2+6} — C

(6 > 0) is holomorphic and even and satisfies the growth condition

(3) h(r) = O<(1+|rl2)_1_6>

for |r| —— o uniformly in the strip. Let
(4) g(u) = 5%— f h(r)e ™ ar

be the Fourier transform of h . Then the Selberg Trace Formula states:

e (F)
an

(5) L h(r)) = [ rh(r) tanh nr dr

log N(PO)

+ g(log N(P)) .

f

2 =3 — &
{P}T N(P)*-N(P)
The sum on the right-hand side extends over all .f—congugacy classes

{P}T of the hyperbolic elements P € T ~ {I} . N(P) denotes the norm



of P, that is, N(P) 1is equal to the square of the eigenvalue of

a b) _ az+b a b\ _ ;
(c a) (Pz = cz¥d ' det (c d> = 1) with larger absolute value.

Finally, PO is the primitive hyperbolic element associated with P,
m

that is, P = Po with Po €T and m =1 maximal. All the sums and

integrals in the above trace formula (5) are absolutely convergent.

D. A. Hejhal [He 1] gives a detailed proof of the trace formula in
the cocompact case and some of its applications; see also the survey
articles by Elstrodt [E4], Hejhal [He 3], Venkov [Ve 1] and Wallach
[Wa]. The proof of the trace formula rests on the basic fact that the
eigenfunctions of the differential operator A are simultaneously
eigenfunctions of all integral operators associated with point-pair
invariants in the following manner: For every compactly supported

continuous function Y¥: [0,[ — ¢ , the function

lz—z'l2 )

Im z Im z'

k(z,z"') := W(

is a point-pair invariant, that is,

kR(Mz,Mz') = k(z,z") (M € PSL(2,1R)).
The series
K(z,z') := £ k(z,Mz")
MET

is locally finite and I'-invariant in both variables and hence defines

a linear operator

K: # — I

(Kf) (z) := [ K(z,z")f(z")dw(z")
F
Now, if An = %+ri is an eigenvalue of -A with eigenfunction fn‘
then Kfn = h(rn)fn where the even entire function h , independent
of X_, is constructed by the following chain of integral transforma-

n

tions:



¥ — Q: [O,@] — €, Q(x) := |
X

(Abel's integral transform),
Ob— g: R — ¢, g(u) := Qe + e " -2),

gk h: ¢ — ¢, h(r) := [ e

The kernel K has the eigenfunction expansion

8

K(z,z') =
n

h(rn)fn(z)fn(z') s

I ™M

O
Under certain mild additional assumptions on Y , this series converges

uniformly on THxIH , hence [ K(z,z)dw(z) can be computed by termwise
}:’

integration. This yields the preliminary trace formula

(6) b h(rn) = j K(z,z)dw(z)
n=0 F
Representing K(z,z) by the series ¥ hk(z,Mz) and interchanging in-

MET

tegration and summation one can transform the last integral into the
right-hand side of the trace formula by some calculations. Then suitable
approximation arguments complete the proof of the trace formula for ar-
bitrary pairs of functions (h,g) with the properties (2), (3) and (4).
The proof is considerably more difficult if T is not cocompact but
still cofinite. Then T also contains parabolic elements and A has a
continuous spectrum in addition to the discrete one. In this case a
term derived from certain eigenpackets associated with the Eisenstein
series has to be subtracted from K(z,z) on the right-hand side of the

preliminary trace formula (6).

Selberg also discussed trace formulae of the type (6) in a more general
geometrical setting. He proved the trace formula for cofinite groups
where A is applied to vector-valued functions on IH satisfyinag

foM = x(M)f (M € T) with a unitary character x , but up to now he

has refrained from publishing a proof. In [He 2] Hejhal proved the



trace formula for cofinite groups in the following more general frame-
work. Instead of A he considered the differential operator of real
weight 2k :

g

2
Ak:y2(5%+§>—i2ky% "
The character ¥ has now to be replaced by a so-called unitary multi-
plier system ¥ of weight 2k (cf. section 1.3). It is convenient to
define ¥ on the subgroup I of SL(2,1R) corresponding to T and
containing the element -I = (1; _?) . It is known that Ak is an es-
sentially self-adjoint linear operator on a dense subspace Dk of a
Hilbert space Hk . The elements of Hk are functions defined on TH
with values in a finite-dimensional vector-space V and with the trans-

formation behaviour

f(iiig) = exp(i 2karg(cz+d))x((2 g)) f(z)

<z € M, <i g) €r, arg: ¢ ~ ]-»,0] — ]—","]>

There exists a close connection with the so-called classical entire au-

tomorphic forms. If g 1is a classical entire automorphic form, then

the function f defined by f(x+iy) = ykq(x+iy) belongs to Dk and
is an eigenfunction of —Ak with eigenvalue k(1-k). The proof of the
trace formula is similar to the case k = O , the technical expenditure

is higher at some points. An eigenpacket part arises if and only if the

underlying multiplier system x is singular (cf. section 1.5).

Selberg noted a striking analogy of his trace formula with certain
"explicit formulae" in analytic number theory. On the one hand of these
"explicit formulae" the non-trivial zeros of the Riemann zeta-function
are inserted into a holomorphic function h . On the other hand the
Fourier transform of h is applied to the logarithms of the powers of

.

the primes. Proceeding from this analogy Selberg introduced a zeta-



function associated with TI' and yx which has properties similar to
those of the Riemann zeta-function. The Selberg zeta-function arises

as follows. Consider the trace formula with

1 1
h(r) = - .
(s=3) 2412 (a-1)2+r?

where the parameters s,a satisfy Re s > 1, Re a > 1. Then on the
right-hand side of the trace formula there appears a contribution of the
hyperbolic elements of T which as a function of s can be written

as the logarithmic derivative of the product

Z2(s) = T m det <idv - X(po)mpo)'s““)
{PO}r m=0
hyp., prim.

This product converges absolutely and uniformly on compact sets in
{s € ¢: Re s > 1} . The tracé formula immediately yields that the
function Z(s) has a meromorphic continuation to the whole s-plane

and satisfies a functional equation. There exists a series of trivial

zeros of 2 . The non-trivial zeros are precisely the numbers
. ; 2. .
§+1rn , 5—13:n , where An - %,+rn is an eigenvalue of —Ak . All but

finitely many of the non-trivial zeros of Z are on the critical line
{s € ¢: Re s = 2} , that is, the analogue of the Riemann Hypothesis is
true for 72 . Moreover, the definition of Z closely resembles the
Euler product expansion of the Riemann zeta-function. All these pro-
perties are in striking analogy with the standard properties of the

zeta-functions and L-series arising in number theory.

THE CONTENTS OF THIS VOLUME

A more direct approach to the Selberg zeta-function was suggested by

J. Elstrodt in [E4] for the case of a fixed point free cocompact group

with trivial multiplier system of weight O . For the analogous



situation in three-dimensional hyperbolic space Elstrodt, Grunewald
and Mennicke [EGM] explained a corresponding procedure. The elaboration
of this approach for an arbitrary cofinite Fuchsian group with a uni-
tary multiplier system of real weight 2k is an essential part of the
contents of this volume. The papers [Ro 1], [Ro 2] by W. Roelcke and [E1],
[E2] by J. Elstrodt form the basis of our considerations. Both these authors
show that a complex number under appropriate assumptions belongs to the
resolvent set p(-Zk) of the self-adjoint extension —Zk: Sk —_— Hk
and that the resolvent operator has an integral representation

of -Ak

of the form

(-E -0 'f = ’j: Gy, ( 2)f(2)du(z) (f € 1) .

For z % z' mod I' the kernel ka(z,z') is determined by a normally
convergent matrix series, the summation being extended over all M € T
(cf. p. 26 , (1.4.7)). The integral representation of the resolvent
operator is stated in Theorem 1.4.10 (p. 27). Apart from some defini-
tions and simple considerations needed later on, the second important
result reported on in the first chapter is a theorem by Roelcke on
orthogonal expansions of the functions f € Sk with respect to a com-
plete system of orthonormal eigenfunctions frl (n 2 0) and eigenpackets
of —Zk ; see Expansion Theorem 1.6.4 (p. 37). In section 2.1 we trans-

form the integral
(A=1) £ tr<GkA(z’z')ka(z"Z)>dw(zl)

into the sum of the series
1 1 2
(7) Z<—7——_—>[f (z) ]
n=0 >‘n h An H n

and a contribution of the Eisenstein series. On the other hand Hilbert's

resolvent equation yields



(A=yu) £ tr<GkA(Z’Z‘)ka(Z"Z))dw(z')

= Z}_ifztr<GkA(Z'z')_Gk“(Z'Z')> .

Integrating (7) over F we obtain

1 1
(8) r (vl - )
n=0 >\n A Xn H

as the trace of the iterated resolvent kernel. The preliminary version
of the resolvent trace formula (p. 46, Theorem 2.1.2) states that the
series (8) is equal to the integral of the difference of

lim tr(Gkk(z,zW-Gku(z,z')> and the eigenpacket part, the resolvent

z—2z'

kernels being represented by the series (1.4.7).

This integral is computed in sections 2.1, 2.2, 2.3 and 2.4 after the
integrand has been split into four sums corresponding to the identity,
the hyperbolic the elliptic and the parabolic elements of I, respec-
tively. The latter of these sums must be integrated jointly with the
eigenpacket part since the single integrals do not exist. After the
substitution A = s(1-s), u = a(l1-a) (Re s, Re a > 1) and some cal-
culations where certain formulae on the hypergeometric function are
quite useful there appear terms which may be looked at as logarithmic
derivatives of holomorphic functions in s resp. a . The contribution

of the hyperbolic elements has the form

17z

1z
Z) - @ @

2s-1

where 7 denotes the Selberg zeta-function (p. 50, Proposition 2.2.5,
p. 56, Corollary 2.2.6). The contributions of the other elements turn
out to be logarithmic derivatives of elementary functions involving the
gamma function resp. the Barnes G-function in the case of the identity.
The computation of the elliptic and especially the parabolic terms is
considerably more complicated than the hyperboli? part. We state the

results of our computations in Proposition 2.3.4 (p. 61), Corollary 2.3.5



10

(p. 68) for the elliptic and in Proposition 2.4.21 (p.102), Corollary
2.4.22 (p.104) for the parabolic case. In section 2.5 we obtain the

Resolvent Trace Formula (p. 106, Theorem 2.5.1, p. 108, Theorem 2.5.2),

an important special case of the Selberg Trace Formula, by combining
the results achieved before. From the Resolvent Trace Formula we con-
clude well-known formulae for the dimensions of the spaces of classical
entire automorphic forms of weight 2k > 2 and necessary conditions
for the existence of unitary multiplier systems X of weight 2k € IR

in the cocompact case.

This approach to the Selberg zeta-function clarifies the origin of the

apparently arbitrarily chosen function

1 1
h(r) = =
(s-3) 2422 . (a-1) %457

which makes the zeta-function arise from the general Selberg Trace Formula.
The direct approach bears another advantage, as some otherwise neces-
sary very technical approximation arguments are avoided. Moreover, our
computation of the non-hyperbolic contributions automatically yields
the appropriate elementary factors by which the Selberg zeta-function

7z must be multiplied in order to obtain a function E that enjoys
very simple properties. To be more explicit, we mention that E 1is an
entire function the zeros of which are exactly the numbers % = irn

and which satisfies the simple functional equation

891

(s) = E(1-5s)

The notations %, £ are analogous to the usual notations ¢, & for

the Riemann zeta-function ¢ and its associated entire function

£(s) = is(s-1)m 2 W%)C(S)
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The parabolic terms account for a product P(s) introduced in section
3.2, and the investigation of ZP in sections 3.2, 3.3 and 3.4 will
yield interesting results. For example, EP is an entire function of

order precisely 2, whereas E and P are entire functions of order

at most 2 (p. 125, Theorem 3.2.11, p. 126, Corollary 3.2.13). The series
5ot
n20
A_#0
n
converges for Re s > 1 (p. 125, Corollary 3.2.12). It remains an open

question whether or not 1 is the exact abscissa of convergence of

this series for all cofinite groups. An estimate on the argument func-

tion arg £ (1+iT) for T — +o renders to the Weyl-Selberg asympto-
tic formula for the distribution of the eigenvalues: Let N(T) denote
the number of zeros %+irn of ® such that r. € ]o,T[ , and let

¢(s,x) denote the determinant of the so-called scattering matrix which
is defined by means of the Eisenstein series. Then the Weyl-Selberg

asymptotic formula states:

(AT L w(F) L2
5 (it x)dt = afe 1oy R(T)

(9) N(T) - =

= R

where d denotes the dimension of the range space V of the automor-
phic forms under consideration and where R(T) 1is an error term that
will be discussed later (see p. 138, Theorem 3.3.13). Commenting upon
the growth of the terms on the left-hand side of (9), Selberg remarks
in his Gottingen lectures: "Unfortunately however, we have in the ge-
neral case no means of separately estimating the two terms on the left-hand side
of [(9)] so that the asymptotic formula for the distribution of the eigenvalues r;
cannot be given. Only in some special cases when the function @(s,¥) can be
expressed in terms of functions that are known from analytic number
theory can we do this, and in all these special cases the second term
on the left-hand side of [(9)] is O(R logR) as /R — « ." On the

basis of this result for congruence subgroups of the modular group,
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Selberg conjectured that N(T) is always dominant. A strong form of
this so-called Selberg conjecture was recently disproved ([DIPS],
[PS1] , [PS2])under certain assumptions, such as extended Riemann hypo-
theses, but there still remain difficult open problems. We shall com-

ment further on this topic at the end of section 3.3.

Since the function & 1is at most of order 2 , it admits a factoriza-
tion in the form of a Weierstraf product multiplied by eQ with a po-
lynomial
0(s) = a,(s-1)% + a (s-1) + a
2 ® 1 = o
of degree at most 2 . We develop certain formulae for the coefficients

of Q in section 3.4. There is an amazing analogy of the highest coef-

ficient a,

est coefficient of the polynomial in the analogous canonical factoriza-

with the Euler-Mascheroni constant which governs the high-

tion of the Riemann zeta-function. For example, if I 1is cocompact or

if the multiplier system X 1is regular, we have

a2=lim< 5 —%-d“’éf) logT).
T»®'n >0 r T
n
r #0
n
Re r <T
n

The full results are summarized in Theorem 3. 4.8 (p. 157).

The resolvent method yields no less than the usual approach to the
Selberg Trace Formula and to the zeta-function. This is explained in
the fourth and last chapter. In particular, the general Selberg Trace
Formula for pairs of functions (h,g) satisfying the above conditions
(2), (3), (4) is deduced from the Resolvent Trace Formula by simple use
of the calculus of residues. Thus the resolvent method does not lead
to a "loss of information", the Resolvent Trace Formula resp. the
Selberg zeta-function turn out to inherit just as'much information as

the general Selberg Trace Formula.



