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ABOUT THE SERIES

Optical science, engineering, and technology have grown rapidly
in the last decade so that today optical engineering has emerged
as an important discipline in its own right. This series is devoted
to discussing topics in optical engineering at a level that will be
useful to those working in the field or attempting to design sys-
tems that are based on optical techniques or that have significant
optical subsystems. The philosophy is not to provide detailed
monographs on narrow subject areas but to deal with the material
at a level that makes it immediately useful to the practicing scien-
tist and engineer. These are not research monographs, although
we expect that workers in optical research will find them extremely
valuable.

Volumes in this series cover those topics that have been a part
of the rapid expansion of optical engineering. The developments
that have led to this expansion include the laser and its many com-
mercial and industrial applications, the new optical materials, gra-
dient index optics, electro- and acousto-optics, fiber optics and
communications, optical computing and pattern recognition, optical
data reading, recording and storage, biomedical instrumentation,
industrial robotics, integrated optics, infrared and ultraviolet sys-
tems, etc. Since the optical industry is currently one of the major
growth industries this list will surely become even more extensive.

Brian J. Thompson

University of Rochester
Rochester, New York
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PREFACE

The aim of this book is to provide the optics designer or user
with information on the broad range of materials used as optical
elements in systems and devices. For each class of materials
(glasses, crystalline materials, plastics, coatings) fundamental
performance requirements, basic characteristics, principles of
fabrication, possibilities for new or modified materials, and key
characterization data are provided.

This volume will give the reader a broad perspective on the
optical materials now available and the possibilities for their future
development, as well as provide data useful for preliminary mate-
rials selections and optical design. The bulk of the discussion
relates to refracting materials, because this is the area of great-
est variety and most generalized applicability in the optic arts.

The contents are intended to be useful to a wide range of
readers, including

Optical system and device designers and developers
Optics designers and optics engineers

Materials engineers

Physical measurements engineers

Test engineers

Students of optical sciences

Students of materials sciences

It is hoped that these practitioners will find the organization
of the information to be a helpful aid in appreciating and there-
fore properly evaluating the various materials available for spe-
cific applications.

The book is designed mainly for the technical worker who
already has become knowledgeable in one or more aspects of op-
tical phenomena, applications, and/or materials science.

The volume, furthermore, is intended to be practical and not
mathematically involved.

Solomon Musikant
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1

TRANSMISSION, REFLECTION,
AND ABSORPTION OF LIGHT

1.1 ELECTROMAGNETIC SPECTRUM

The true nature of light is probably impossible to know. However,
Maxwell's theory (James Clerk Maxwell, 1831—1879) and the quantum
theory provide a consistent theoretical explanation of all optical
phenomena. Maxwell assumed that light is merely one form of elec-
tromagnetic energy that has a wave form and a periodic nature.

These electromagnetic waves travel at a fixed velocity in a given
medium and have a range of frequencies, or wavelengths. In a
vacuum, electromagnetic waves propagate at a velocity vg of 3 x
1010 em/s. The relationship among wavelength A, frequency v, and
velocity in the medium, v, is given by

A= Y

v

where ) is the wavelength (cm), v the frequency (Hz), and v the
velocity (cm/s).

The units of length commonly used when discussing wave motion
in the optical region are

Unit Symbol Length
Micrometer um 106 m
Nanometer nm 10 o m
Angstrom A 10 10m

The unit of frequency is the hertz (cycles per second) abbreviated
Hz.



Light

(T "IOA ‘6LBT ‘MIOX MON ‘SSadd OIWAPRIY ‘SIUBWBJUNSDIW uolDIpny po12dO

‘asadyodg °p *yY pue wnan *J jo uotsstwaad yimm pajuraday) -wnajoads opeulewoalod[y || 24nbi4

1-W9 * HIBWNAVA 005 0004 0052 000§ 0000 000°62
wrl ‘HIONITIAVM Of % _§ o 8 v ¢ 26 I %0 90 %0
1 ) 1 I T T 1 | I O O I ) 3
' TUOAS A
!_-.:w. pOJDIJU 104 | poIDIy NPPIN} paIDIJU] JDON ! oHqIsIA AR
H H
\\\
~<
AN ~< \\
~o 4
\

U ADNINOIMS  (OIE LOIXE (OIXE GOIXE ,0E gOIXE o_so_o:m 1OXE GOE (OE JOIXE GOIxe %_.n 1OE OIXE gOINE
HIONITIAWR W00l WYOI wy) woor  wol .s ._.8. S_ .__eo 0" wro) .ie. ..i. .i_o Yoo -9 y o
I I

1 I T T I T
FL N L R N 1y

= \_ ..s;z.sgz.. “Eﬁo

.

opoy oADROIAN |

peioIu)

t

L
|
I feandg -




Band Structure 3

The electromagnetic spectrum is partitioned into various classes
of electromagnetic waves, based on ranges of wavelength. Visible
electromagnetic waves (light) extend from 400 to 750 nm. Electro-
magnetic waves with wavelengths down to 10 nm are called ultra-
violet light. The lower limit is a matter of definition. The infrared
band extends from 750 to 106 nm (103 um). The electromagnetic
spectrum designations are shown in Fig. 1.1.

We will be directing our discussion to the portion of the spectrum
bounded by the ultraviolet (UV) region on the short-wavelength
side to the infrared (IR) on the long-wavelength side.

1.2 BAND STRUCTURE OF METALS, DIELECTRICS,
AND SEMICONDUCTORS

Quantum theory was developed during the early part of this century
by Planck, Einstein, Bohr, de Broglie, Schrodinger, and Heisen-
berg. This theory accurately predicts the behavior of a wide range
of solid state phenomena. An excellent introductory treatment of
this subject was given by Bohm (1951).

The gquantum theory employs Newton's idea that light is composed
of small discrete bodies, now called photons. Modern theory ac-
cepts the dual nature of light, i.e., that light exhibits both the
wave character of Maxwell's formulations and the particle character
envisaged by Newton. Maxwell's theory treats the propagation of
light, while the quantum theory deals with the interaction of light
with matter.

Photon energy can be described in terms of wavelength ), wave
number N, joules (J), electron volts (eV), or frequency. These
are related through the following equations:

v = Av cm/s 19
E=hvJd or E = 0.6242 x 107" hv eV
N=1/x em~1

where v is the velocity in the medium (cm/s), n the frequency (Hz),
E the energy of photon (J or eV), h = 6.62517 x 10~ 34 3/s (Planck's
constant), N is the wave number (cm™ 1) or number of waves in 1 cm
of path, and 1 eV = 1.602 x 10-19 g, Frequency, wavelength, and
quantum energy in various regions of the electromagnetic spectrum
are shown in Table 1.1.

Consider a crystal to be made up of a collection of atoms in a
regular array, known as a lattice. Each atom has one or more elec-
trons in its outer electron shell. In an isolated atom, the electrons
surrounding the nucleus are restricted to a set of discrete energy
levels as required by the quantum theory.
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Band Structure 5

Each level can hold up to two electrons. The lower levels are
occupied and the higher ones become occupied as the lower energy
electrons become excited. In a crystal, the single discrete levels
of the individual atoms broaden into a band of closely spaced dis-
crete energy levels.

Figure 1.2 shows a number of band configurations. The ordinate
represents energy level. The abscissa can be thought of as the
distance from the surface of the crystal. The dark regions repre-
sent bands that are filled with electrons. The lighter regions rep-
resent unoccupied allowable (quantum) levels. The white regions
represent forbidden energy values. That is, in accordance with
the quantum theory, no electrons may occupy any energy level in
the forbidden bands.

Electrical conduction can take place if the electrons can be ex-
cited into an unfilled quantum level. Thus in Fig. 1.2a, a very
small increment of energy or excitation will promote the lower (va-
lence) electrons into the empty (conduction) band. Thus Fig. 1.2a
represents the band configuration for a metallic conductor.

Figure 1.2b represents the band configuration for an insulator
or dielectric material. A tremendous amount of energy must be
imparted to the electrons in the valence band to promote them to
the conduction band. The difference in energy E, between the top
of the valence band and the bottom of the conduction band is desig-
nated as the band gap. Eg values of various materials are shown
in Table 1.2.

Semiconductors are characterized by a small band gap as indi-
cated in Fig. 1.2c. In this case, E_ is low and small excitations
promote the electrons into the conduction band, leaving unfilled
positions in the valence band which then becomes conductive by
movement of the "holes" left behind. In an intrinsic semiconductor,
such as germanium, the number of conducting electrons equals the

(b) (c}

Figure 1.2 Electron occupation in various band configurations:
(a) conductor, (b) insulator (dielectric), and (e¢) semiconductor
(from Hutchinson and Baird, 1963).
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Table 1.2 Values of the Energy Gap Between the Valence and
Conduction Bands at Room Temperature?

Crystal Eg (eV) Crystal Eg (eV)
Diamond 5.33 ZnS 3.6

Si 1.14 ZnSe 2.60
GaAs 1.4 AsCl 3.2
siC 3 Asl 2.8
A1203 8+ T102 3

Ge 0.75

850urce: Kittel (1966).

number of holes. However, by a process known as "doping," an
extrinsic semiconductor can be fabricated to contain a preponder-
ance of electron type conductors upon excitation or a preponder-
ance of hole type conductors upon excitation. The former is
called an n-type semiconductor and the latter, p-type.

A fuller treatment of this area can be found in many textbooks
on solid state theory such as Kittel (1966), Smith (1961), and
Hutchinson and Baird (1963). An excellent text on materials sci-
ence has been written by van Vlack (1964).

For metals, the band gap is low so that photons of either en-
ergy, UV to IR, will excite the metal electronic structure and
thus induce reemission of energy.

In the visible, this reemitted energy is observed by the eye
as metallic lustre. Semiconductors have an intermediate level of
Eg and thus will tend to be excited by photons of an intermediate
energy content and be transparent for lower energy photons,
i.e., exhibit lustre in the visible and be transparent in the IR,
where no interaction of the photon and the electronic structure
takes place.

If there is no interaction between the photons of a particular
energy level and the electronic structure of the material, then
the material is transparent to the photon. Dielectrics have a high
Eg and only high-energy photons in the UV can excite the elec-
tronic structure. Therefore, dielectrics tend to be transparent
in the visible and IR regimes.

In addition to the electronic excitation, photons also excite
the ionic lattice. This excitation reveals itself as lattice absorp-
tion of photons of relatively low energy in the IR and short mil-
limeter radio frequency bands.
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1.3 OPTICAL PROPERTIES OF MATERIALS

The intensity I of an electromagnetic wave is the amount of energy
per unit time transmitting through a unit area which is transverse
to the propagation direction.

A collection of atoms (a material) interacts with incoming photons
(a light beam). The atoms and associated electronic structure
which are excited by the photons reemit photons. The propaga-
tion pattern which results is observed in terms of surface reflec-
tion and transmission characteristics of the optical material.

The optical properties of the material are functions of the wave-
length of the incoming light, temperature of and applied pressure
on the material, as well as the environment (including electromag-
netic fields) acting on the material.

The index of refraction n of a material which transmits light is
given by

Yo
v

n=

where vg is the velocity of light in a vacuum and v the velocity of
light in the medium.

The complex refractive index n* includes the parameter «, which
is related to the energy absorbed by the medium from the light
beam as it propagates through the medium. The complex refractive
index is given by (Jenkins and White, 1957)

s aA

n* =n(l —-ik) and « = am
where k is the absorption index and o is the absorption coefficient.

Figure 1.3 characterizes metals, semiconductors, and dielectrics
in terms of the index of absorption as a function of wavelength.
The specific shape and location of absorption peaks varies with the
nature of the specific material involved.

Consider Fig. 1.4, which represents a light beam propagating
through a solid. The intensity I of the beam just after entering
the medium is attenuated as it passes through the solid medium.
That attenuation is given by Bouguer's law (Pierre Bouguer, 1698—
1758), which states

I= Ioe_o‘x

where I is the intensity at position x, x the distance along the path,

o the absorption coefficient, and e the base of natural logarithms.
The optical region of Fig. 1.3 is shown in an expanded plot for

a typical dielectric in Fig. 1.5. In this case, the data are plotted



