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PREFACE

There are many approaches to the problem of integrating the ele-
mentary collegiate mathematics course, ranging from a belief in the
traditional separation to one of complete integration through the
caleulus with the introduction of the calculus coming very early.
There is much to be said for each of these approaches. Without
attempting to evaluate the relative merits of the various plans, the
authors feel that there is a definite need for a book like the present
one, one reason being the increasing popularity of integrated courses
in analytic geometry and calculus, for which an integrated course in
college algebra and trigonometry is a natural introduction.

The emphasis on the study of the elementary functions of mathe-
matics forms a natural basis for the integration of algebra and trig-
onometry, and is the basis of the present treatment; thus, the mathe-
matical concept of function has been used as the underlying theme of
this book. The subject then becomes, in a very real sense, the study
of the properties and applications of the elementary functions based
on the principles of algebra, leaving the subsequent study of these
functions based on the idea of limit as the province of the calculus.

In particular, in the treatment of the topics in trigonometry the
emphasis is on the study. of the trigonometric functions as functions.
For example, the inverse trigonometric functions, in Chapter 10, are
treated as an integral phase of the development of the elementary
functions, instead of being relegated to an obscure role at the end of
the book. In this sense, the solution of triangles becomes an applica-
tion of the trigonometric functions. This emphasis, in addition to
imparting a unity to the subject, also serves to remove early in the
course the restricted concept of trigonometry that persists with many
students who have studied the subject in high school.

Varied types of students must be served by a course in algebra and
trigonometry. The student who pursues the course as a preliminary
to the further study of mathematics, whether as a mathematics major
or as a student of engineering or science, must, of course, obtain a
firm foundation in the many skills required. On the other hand, he
must also acquire the mode of thinking that considers mathematics
as more than a mere collection of skills. The student for whom col-
lege algebra and trigonometry is the terminal mathematics course
should attempt to achieve some of the feeling of mathematics as a
cultural subject, and some knowledge of the concepts contained
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vi PREFACE

therein, that can persist when the special skills may be forgotten.
It is the belief of the authors that both kinds of student are served to
excellent effect by the emphasis on the function concept as applied
to elementary mathematics.

In the first chapter, together with the usual development of the
fundamental notions, there is included a brief discussion of number
systems, starting with the positive integers or natural numbers and
leading to the negative integers and zero, the rational numbers, the
irrational numbers, and the complex numbers, with the need for each
type indicated.

Except for the discussion of number systems, the material in the
first four chapters represents essentially a review of the content of
the usual one-year course in high-school algebra. To facilitate the
review, especially for those students with more than this minimum
preparation in algebra, an extensive list of review exercises is given
at the end of the fourth chapter.

In Chapter 5 the function concept is introduced and applied to the
trigonometric functions. In subsequent chapters this concept is
related to many of the usual topics in algebra and trigonometry.

The use of the radian measure of an angle is introduced early, in
conjunction with the degree measure, and continuous use is made of
it in the following treatment. It is hoped thereby to avoid a common
tendency of students to feel that radians may be useful only in con-
sidering lengths of arc on a circle, and should be ignored for every
other purpose. The distinction between the idea of angle and the
measure of an angle is clearly made.

With the abundance of material available for inclusion in the pres-
ent book, the authors have deliberately omitted extended treatments
of certain topics such as partial fractions, limits, and infinite series.
However, some of these matters are not avoided where they arise
naturally during a discussion. For example, binomial expansions
for negative and fractional exponents are discussed in Section 7 of
Chapter 12, and infinite geometric series are discussed in Section 3 of
Chapter 17. For the topics which have been included the emphasis
has been on as rigorous and logical a treatment as possible. To be
sure, not every statement can be proved in an elementary course,
but omissions of proof are stated. It is hoped that the student will
thus know what has been proved and what has not been proved, and
in each case will not have to “unlearn” later what has supposedly
once been learned.
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A feature of the presentation is an extended discussion of trigono-
metric reduction formulas. Proofs of these formulas are not readily
available to the interested reader, and it is hoped that such students
will appreciate the complete proof given. The study of the proof
may be omitted without disturbing the remainder of the treatment.

The choice of 4-place tables on which to base the numerical aspects
of the presentation was made with the idea that such tables involve
the same principles as do more accurate tables and have an advantage
in the economy of time involved in their use.

Students entering a course for which this text is designed will vary
in their mathematical preparation. For the student with only one
year of high-school algebra, the material in the first four chapters
contains, in addition to a discussion of number systems, a detailed
review of the usual material of that course and enough of high-school
algebra to prepare him for Chapter 5, in which the idea of function
is introduced. For the student with one and one-half years of high-
school algebra, a very brief review of these first four chapters will
suffice. For the better prepared student there is ample material for
a five-semester hour course based on Chapters 5 through 18, with
some leeway permitted the instructor in the selection of material.
For the less well prepared student a course of six- to eight-semester
hours can be given by varying the time spent on the first four chapters.

Since there are places where any attempt at integration would seem
forced, such artificial attempts have been avoided. In such instances
the most fruitful direction appears to be that in which skills acquired
and principles learned are applied to any of the functions to which
application can be made. The exercises to be worked by the student
have been designed in many cases to carry out this idea. For the
reader, answers are provided at the back of the book for odd-num-
bered exercises. For the teacher, all of the answers are available
in a separate booklet.

We are indebted to Rinehart & Company, publishers, for per-
mission to use Table 4, which was taken from Fundamentals of
College Mathematics by Johnson, McCoy, and O’Neill, and to D. C.
Heath & Company for permission to use Table 2, which was taken
from A Brief Course in Trigonometry by Curtiss and Moulton.

A.S.
R. H. B.
February, 1955
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USEFUL ITEMS FROM PLANE GEOMETRY

. Two angles are complementary if their sum is 90°.

. Two angles are supplementary if their sum is 180°.

. The sum of the angles of any triangle is 180°.

. Theorem of Pythagoras. In a right triangle the square of the hypotenuse

is equal to the sum of the squares of the legs.

. If a right triangle has a 30° angle, the side opposite that angle is equal

to one-half of the hypotenuse.

. If two angles of a triangle are equal, the opposite sides are equal, and

conversely.

. Two triangles are similar if the angles of one are equal, respectively,

to the angles of the other.

. If two triangles are similar, corresponding sides of the triangles are

proportional.

. If the sides of an angle are perpendicular, respectively, to the sides of

another angle, the angles are either equal or supplementary.

The area of any triangle is equal to one-half the product of any side and
the altitude drawn to that side.

The angle bisectors of a triangle intersect in a point, which is the center
of the inscribed circle.

The perpendicular bisectors of the sides of a triangle meet in a point,
which is the center of the circumscribed circle.

GREEK ALPHABET

alpha B beta v gamma 6 delta e epsilon ¢ zeta
eta 6 theta ¢ iota k kappa X\ lambda g mu
nu £ xi o omicron w pi p rho o sigma

tau v upsilon ¢ phi x chi ¥ psi w omega
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CHAPTER 1

NUMBER SYSTEMS AND FUNDAMENTAL OPERATIONS

The development of the number system has been a long and tedious
process in the history of mankind. From its beginning in the simple
counting of objects to its present highly developed stage the advances
have often been slow and difficult. Among the greatest advances
has been the introduction from time to time of various aspects of the
simplified notation as presently used. For example, the use of a
symbol to designate zero constituted an exceptionally notable
achievement which did not come about until long after the Greek
era.

In advanced treatments the construction of the number system is
made to depend on a minimum number of assumptions, together
with logical deductions from them. It is not our intent to present
here a complete and rigorous exposition, nor would it be possible to
do so. However, an outline of various phases of the development
will prove interesting and helpful.

1-1 The integers. The most elementary experience with the
number system occurs in learning to count. This use of numbers
involves only the positive integers, 1, 2, 3, 4, ete., or the natural num-
bers, as they are also called. The next step consists in the combi-
nation of the positive integers in various ways, by addition and
multiplication. Each operation of addition and multiplication with
positive integers results again in a positive integer; this fact is ex-
pressed in the statement that the system of positive integers is closed
under the operations of addition and multiplication.

DeriNtTiON 1-1. If b and ¢ are positive integers, the product of
b and ¢ means the sum ¢ + ¢ + - - - + ¢, where there are b numbers ¢ in
the sum. The product of b and c is designated by be, or b-¢, or b X c.

It is frequently desired to refer to the sum or product of two or
more numbers as a single quantity. For this purpose various group-
ing symbols are used, such as parentheses, (), brackets, [ ], braces, { },
and the vinculum, For example, (a+ b) + ¢ means that the
sum a + b is first computed, and to that sum c¢ is then added, and
a - be is obtained by computing the product be and then multiplying
that product by a.

1



2 NUMBER SYSTEMS AND FUNDAMENTAL OPERATIONS [CHAP. 1

The order in which the positive integers are combined, whether in
addition or multiplication, is immaterial, i.e., the following properties
hold:

A bt+c=c+b

B. bec=cb

C. b+(c+d)=0h+c)+d=b+c+d
D. b(ed) = (be)d = bed.

A further property, involving addition and multiplication, is
E. b(c+d) = bec+ bd.

Properties A and B are known as the commutative laws of addition
and multiplication, respectively, and C and D are the associative
properties of addition and multiplication, respectively. Finally, E
is the distributive property of multiplication with respect to addition.
It should be noted that the associative properties in C and D make
the use of parentheses unnecessary for a sum or product of integers.

The next operation with the integers would naturally be to find the
difference of two integers. The difference between two positive
integers a and b is defined as the number which must be added to b
to give a.

IrustrATION. The difference between 5 and 2 is 3, since 2 4+ 3 = 5.

It is very convenient at this point to introduce the minus sign (=)
and to indicate the difference between b and ¢ as b —¢. Thus we
would have 5 — 2 = 3. The process of finding the difference between
two integers is called subtraction. We note that it is not always
possible to find the difference between two positive integers as a
positive integer (for example, 3 — 5 is not a positive integer), so that
if subtraction is to be always possible it is necessary to expand the
system of positive integers to a new system which contains zero and
the negative integers in addition to the positive integers. Zero is
defined as the difference between any positive integer and itself,
0 =a —a. A negative integer (—a), where @ is a positive integer, is
defined as the number such that a + (—a) = 0. In the new system,
which contains the positive and negative integers and zero, it is
always possible to find the difference of two numbers as a number
of the system. The new system of numbers is closed under addition,
multiplication, and subtraction. Moreover, all the propertics pre-
viously developed or stated apply to the new system.
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1-2 Algebraic sums. The expression azr + by — ¢ is an example
of an algebraic sum. In an algebraic sum each part, together with
the sign which is present or implied before it, is called a term of the
expression. The name algebraic sum is used even though some of
the signs of the terms may be minus; thus az — by is a sum of the two
terms ax and (—by). The process of determining the sum (or dif-
ference) of two algebraic quantities involves combining similar terms,
as illustrated below.

ITrLusTtrATION 1. The sum of 3z + 2y — 5) and (22 — 3y + 7) is
Br+2y—35+Q@—-3y+7)=3x4+2y—5+2r—3y+7
=3¢x+2x4+2y—3y—5+7=5r—y+ 2.
IrLustrAaTION 2. The difference between (3z + 2y — 5) and
Qr —3y+7)is
Bx+2y—5)— Qe —-3y+7)=3x+2y —5—-20+3y — 7
=3r—20+2y+3y—5—7=z+ 5y — 12.
ILLUSTRATION 3.
3r—[2r4+(x—5)—3x—1]=3rt—2x+2x—5—3r+ 1]
=3z —[—4] =3z + 4.

Note that the removal of parentheses preceded by a minus sign
necessitates a change in sign of each term within the parentheses.

OraL EXERCISES

Simplify each of the following expressions by removing parentheses and
combining similar terms.

1. 3+ (—2) 2. —3—-5 3. =742 4.5—-7 5.8 —21

6. 3r — 8z 7. —10x + 16x 8. —8a -+ T7a

9. 5y — 12y 10. 5 — 6y — (2 — 3y) 11. 2a — 3b + 4a

12. (a+b) —2a 13. 2a — (a — b) 14. a — (3a — b)

15. 2a + (b —a) 16. —(a —b) + (b — 2a) 17. —(a+b) — (b — a)
18. 2a — (3b + a) 19. (b — 2a) — (3b + 4a)

20. (2a — 3b) — (3a — 2b) 2l.at+z— (y+2) —a+y

22. 2v —u+v — 2z 23. 2a — 3b — a) + (3a — b)

24, a — (2b + 3a) — (4a + 5b) 25. 3a — (b + 2a) + (5b — a)

Exercise Grour 1-1

In the following six exercises, (a) add the numbers, (b) subtract the lower
number from the upper one.

1. 35 2. —43 3. 59 4. =71 5. 0 6. 2798
17 19 —23 —36 75 — 3462




