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O. INTRODUCTION

Sheaves of algebras on a topological space appear in many problems in mathema-
tics and their interest has no longer to be demonstrated. The purpose of this pu-
blication is to study the localizations of the category of sheaves of T-algebras,
where T is a finitary algebraic theory, and the extent to which it characterizes
the topological base space. The techniques developed to solve these problems,
applied to the case of modules on a ring R, provide new results on pure ideals and
the representation of rings. As a matter of fact we develop our study in the more
general and more natural context of a theory T internally defined with respect to
a topos of sheaves on a frame (i.e. a complete Heyting algebra; for example the

algebra of open subsets of a topological space).

We shall normally use the letter H to denote a frame and, unless stated other-
wise, T will denote a finitary algebraic theory in the topos of sheaves on H. In
chapter 1, we recall some basic properties of the categories Pr( H, T) and
Sh( H, ') of presheaves and sheaves of T-algebras on H (limits, colimits, genera-
tors, associated sheaf, and so on ...). Reference is made largely to classical

texts.

In chapter 2, we first study the Heyting subobjects of a fixed object in
Sh( H, T') : these are the subobjects wich satisfy properties analogous to the pro-
perties of a1y subobject in a topos. This allows us to describe the formal initial
segments of Sh( H, ). If u+ is any initial segment of H and 'II‘u¢ the restriction
of T to u+, Sh(u+,1fu+) is a subcategory of Sh( H, ') satisfying very special pro-
perties. We then define '"formal initial segments' to be subcategories of Sh( H, T)
satisfying analogous properties. The Heyting subobjects of a fixed algebraic sheaf

constitute a frame and the same holds for the formal initial segment of Sh( H, ).

Chapter 3 applies the results developed in chapter 2 to classify the localiza-
tions of Sh( H, T) when the theory T is commutative. We build an object e in a
topos &( H, T); the localizations of Sh( H, T) are exactly classified by the
Lawvere - Tierney topologies j : Qo ~ Qe A characterization in terms of
generalized Gabriel - Grothendieck topologies is also given. Examples are produced.

A counterexample is given for the case of a non-commutative theory.

When T is the theory of sets, H can be easily recovered from the topos
Sh( H, T) : it is the frame of subobjects of terminal object 1. In chapter 4, we



introduce a large class of theories to be called integral : sets, monoids, groups,
rings, modules on an integral domain, boolean algebras, ... are examples of them.
When T is integral, the frame H can be recovered from the category Sh( H, ) : it

is the frame of formal initial segments defined in chapter 2.

In chapter 5, we expound the results on formal initial segments for a classical
finitary algebraic theory T. The category of T-algebras is simply the category
of sheaves of T-algebras on the singleton. The frame of formal initial segments
turns out to be the Heyting algebra of open subsets of a compact space Spp(T) to
be called the spectrum of the theory T. Some results of chapter 2 give rise to a

sheaf representation theorem for TMT-algebras on this spectrum Spp( ).

Chapter 6 is devoted to the case of the theory of modules on an arbitrary

ring R with a unit. We establish an isomorphism between the frame of formal initial
segments of Mod and the frame of pure ideals of the ring R. Applying the results
of chapter 5, wg present R as the ring of global sections of a sheaf of rings on

the spectrum of the theory of R-modules; the functorial description of this sheaf

is the sheaf of rings of R-linear endomorphisms of the pure ideals of R. An analo-
gous representation theorem holds for any R-module. By interpreting the results of
chapter 3, we also obtain the classification of localizations of Mod as presented

by H. Simmons in [22].

All the material of chapter 6 concerning pure ideals and the sheaf representa-
tion theorem has been obtained as a corollary of the general theory developed
previous chapters. We have found it interesting to rewrite these results using only
standard techniques of ring theory. This is the object of chapter 7 which thus
provides, in the very special case of modules, an approach of the representation
theorem which becomes independant of the general categorical machinery. We include
also some additional results and in particular an alternative representation theo-

rem on the same spectrum of the theory of R-modules.

Finally, in chapter 8, we turn to the case of a Gelfand ring R. We first
prove some useful properties of pure ideals in Gelfand rings and also some charac-
terizations of Gelfand rings in terms of pure ideals. This allows us to prove that
the sheaf representation of chapters 5 - 6 - 7, in the case of Gelfand rings, is
the representation studied by Mulvey and Bkouche in [16] and [3]; in particular
it coincides with Pierce's representation in the case of a Von Neumann regular ring.

As a consequence, we obtain a functorial description of the classical sheaf repre-



sentations for Gelfand and Von Neumann regular rings : this is simply the sheaf
of R-linear endomorphisms of the pure ideals of the ring R. In an appendix,
we show that this description in terms of rings of endomorphisms holds in fact

for any ring in the case of Pierce's representation.

We are indebted to Harold Simmons for translating in the non commutative
case several of our proofs on commutative Gelfand rings. This work has also been
improved by fruitful conversations with M. Carral, C. Mulvey and the participants
of the category seminar in Louvain-la-Neuve. This is the opportunity for us to
thank all of them.
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CHAPTER 1 : CATEGORIES OF ALGEBRAIC SHEAVES

This chapter does not present any new results, except some technical lemmas
which will be useful later. We recall some standard facts on sheaves and alge-
braic theories and take the opportunity to set out the notations and the termi-

nology.

§ 1. ALGEBRAIC THEORIES

A classical or external finitary algebraic theory T can be presented as a
category with a countable set of distinct objects T°, T!, T2, ..., T, ...-such
that T" is the n-th power of T!. A (classical) model of T is a finite product
preserving covariant functor from T to the category Sets of sets; such a model
is also called a (classical) T-algebra. A morphism between two T-algebras is
simply a natural transformation. We denote by §9£§fﬁ the category of T-algebras
and their morphisms. There is a forgetful functor U : §§£§fE -+ Sets which sends
a T-algebra A to the underlying set A(T!). U has a monomorphism preserving
left adjoint F : Sets — §g£§]r. F is such that for any finite set n, F(n) is iso-
morphic to T (Tn,—); so the set underlying F(n) is the set of n-ary operations.

The category §g£§jr is complete and cocomplete. The forgetful functor U
preserves and reflects limits and filtered colimits; it is represented by the ge-
nerator F(1) = T(T!,-) and thus is faithful. A filtered colimit L = lim Ai is
just the set of all elements in all the Ai divided by the equivalence relation
which identifies x € A; and y € Aj if there are morphisms A, - A andi?j ~ A which
send x and y to the same z € A . From this it follows that in Sets =, finite
limits commute with filtered colimits. It is also the case that a morphism f in
§g§§1r is a coequalizer if and only if U(f) is a surjection. Moreover any
T-algebra is a quotient of a free TM-algebra, i.e. for any T-algebra A there
exists a set S and a coequalizer F(E) - A; in fact, E can be chosen to be the

underlying set of A.

If T and T' are two algebraic theories, a morphism of theories T - T' is
a product preserving functor. This induces by composition an algebraic functor
1

Setsjr - Setsjr; this functor has a left adjoint. It should be noted that a

morphism of theories takes any n-ary operation of T into a n-ary operation of T'.

The results already mentioned can be found in [21], chapter 18. The following



facts on commutative theories can be found in [15]. The theory T is called
commutative if for any integers n, m and any operations a : ™ > T!,
B : T" > T! the following square commutes :

m
Tnxm ~ (Tn)m o Tm
[
™" —
gn | B
™ - Tl

5 3 o . . .
when T 1s commutative, Sets = becomes in a natural way a symmetric monoidal

closed category.

§ 2. FRAMES

A lattice H is a partially ordered set in which each pair (u,v) of elements
has an infimum u A v and a supremum u v v. The lattice H is distributive if for
any elements u, v, w of H the following equalities hold

uAa (vvw) = uav)v (uaw

uv (vaw) = (uvv)auvw;
in fact each of these equalities implies the other one. The lattice H is a
Heyting algebra if it possesses a smallest element O, a greatest element 1 and if
for any v, w in H there exists some (necessarily unique) v = w in H such that for
any u in H

UAvV S w iff usvsw;

a Heyting algebra is automatically a distributive lattice.

A lattice H is called complete if each subset of H has a supremum or, equi-
valently, if each subset of H has an infimum. A frame is a complete lattice which

satisfies the generalized distributive law

uan (v Vi) = v (ua Vi).
iel i€l
A frame is necessarily a distributive lattice but the distributive law
uv (A vi) = A (uv Vi)
i€l i€l

holds only for finite I. If H and H' are two frames, a morphism of frames
f:H->H" is amap f : H > H' preserving finite A and arbitrary v. The notion of
frame is equivalent to that of complete Heyting algebra. A morphism of frames

does not preserve the "implication'' v = w.



If X is a topological space, the lattice of open subsets of X is a frame for
the usual laws of intersection and union. If f : X+ Y is a continuous mapping
between two spaces, f induces by inverse image a morphism of frames O0(f) : 0(Y) -~
> 0(X) between the corresponding lattices of open subsets. This gives rise to a
contravariant functor from the category of topological spaces to the category of
frames; this functor has an adjoint which takes a frame into a sober space (i.e.

a space such that any closed subset which is not expressible as the union of two
proper closed subsets is the closure of exactly one point). All the material

we need concerning lattices and frames can be found in [11].

§ 3. SHEAVES ON A FRAME

A frame H can be seen as a category whose objects are the points of H; there
is a (single) morphism from u to v if u <v. A presheaf on H is a contravariant
functor A : HP + Sets; a morphism of presheaves is a natural transformation. If
u<vinH, A is a presheaf on H and x an element in A(v), we denote by x u the
image of x in A(u) under the map A(u < v). The category of presheaves on H is
denoted by Pr( H). A presheaf A is called separated if for any u= v u. inH
and x, y in A(u), ier *

X=y iff viel x

A presheaf A is called a sheaf if for any u = v uy in H and Xy in A(ui), the

condition 1€l
vi jel X3 = X.
u. A u. T A u.
1 J 1 J
implies the existence of a unique x in A(u) such that for any i, x‘u =X

A sheaf is necessarily separated. The full subcategory of sheaves i3 denoted by
Sh( H); the canonical inclusion Sh( H) <= Pr( H) has a left adjoint which preserves
finite limits : it is called the associated sheaf functor and denoted by
a: Pr(H) » Sh(H). (Cf. [1]). If A is a separated presheaf and u € H, aA(u)
has an easy description : consider all the families (xi € A(ui))iel for all the
coverings u = v u. in H, such that
i€l
vi,jel X = X. ;
1 J
u. A U. u. A U.
1 J 1 J

two such families are equivalent if they coincide on all the elements of a common
refinement of the coverings; aA(u) is the quotient by the equivalence relation of
the set of all such families. In that case the canonical morphism A - aA is a

monomoyphism.



§ 4. ALGEBRAIC SHEAVES (EXTERNAL VERSION)

If T is a (classical) finitary algebraic theory and H is a frame, a
presheaf of T-algebras is a contravariant functor A : HP - %H; a morphism
of presheaves of T-algebras is a natural transformation. The corresponding
category is denoted by Pr( H, T). There is a forgetful functor U : Pr( H, T) -
> Pr( H) obtained by composition with the forgetful functor U : Seﬁrﬂﬂ ~ Sets.

U has a left adjoint F preserving monomorphisms and such that for any presheaf

A : H~ Sets, FA(u) is the free T-algebra on A(u). A sheaf of T-algebras is

a presheaf of T-algebras whose underlying presheaf is a sheaf. The corresponding
category of sheaves of M-algebras is denoted by Sh( H, T). The canonical full
inclusion Sh( H, T) <= Pr( H, T) has a left adjoint which preserves finite limits;
the reflection of a presheaf of T-algebras is the sheaf universally associated
to the underlying presheaf. As a consequence there is a forgetful functor

U : Sh(H, T) » Sh( H) which has a monomorphism preserving left adjoint sending

a sheaf A to aF(A). All these results on sheaves can be found in [1].

§ 5. ALGEBRAIC SHEAVES C(INTERNAL VERSION)

If H is a frame, Sh( H) is a topos satisfying the axiom of infinity and it
makes sense to speak of a finitary algebraic theory T internally defined with
respect to Sh( H). This is exactly a sheaf on H with values in the category of
algebraic theories and their morphisms. In other words, T is a contravariant func-
tor from H to the category of algebraic theories and their morphisms, such that
that for any integer n, the functor 1P > Sets which sends u € H to the set
On(u) of n-ary operations of the theory T(u) is a sheaf in the usual sense.

A T-algebra in Sh( H) is a sheaf A : HP > Sets equipped, for any u € H,
with the structure of a T(u) algebra on A(u) in such a way that for u <v in

H and o € On(v) the following diagram commutes

AM(v) & A(V)
n

A (u<sv) < A(u<v)

A" (u) A().




A morphism £ : A » B of T-algebras in Sh( H) is a natural transformation such
that for any u € H, fu is a morphism of T(u)-algebras. The category of
T-algebras in Sh( H) is denoted by Sh( H, T'). An analogous definition holds for
presheaves and we get a category Pr( H, T).

Sh( H, T) is a full subcategory of Pr( H, ) and the canonical inclusion has
a left adjoint a which preserves finite limits and is the associated sheaf functor.
Moreover the obvious forgetful functor U : Pr( H, T) » Pr( H) has a monomorphism
preserving left adjoint F : Pr( H) » Pr( H, ') such that, for any presheaf A and
any element u € H, FA(u) is the free T(u)-algebra on A(u). This implies that
the forgetful functor U : Sh( H, T) » Sh( H) has a monomorphism preserving-left
adjoint which sends a sheal A to aF(A). These results on internal algebraic

theories can be found in classical texts on topos theory, like [12].

We used the same notation Sh( H, T) in both cases of a classical theory T
and a theory internally defined with respect to Sh( H). In fact no real confusion
arises because the former situation is a special case of the latter as can be
seen from the following argument : a classical finitary algebraic theory T may be
identified with a constant presheaf AT of algebraic theories on H; the correspon-
ding associated sheaf aa T is a theory internally defined with respect to Sh( H)
and the categories Sh( H, T) and Sh( H,aA T') coincide. For this reason we shall
work in the more general context of a theory T internally defined with respect
to Sh( H).

From now on and through this chapter H is a frame and T is a finitary alge-
braic theory internally defined with respect to Sh( H). We recall and establish

some basic facts about Sh( H, T).

§ 6. LIMITS AND COLIMITS

Proposition 1.
The categories Pr( H, T) and Sh( H, T) are complete, cocomplete and regular.

Any algebraic category is complete, cocomplete and regular. Now in
Pr( H, T) limits, colimits and images are computed pointwise : this implies that
Pr( H, T) is complete, cocomplete and regular. Sh( H, T) is complete and cocomplete
as a full reflective subcategory of Pr( I, T); it is regular because the reflection
is exact. (Cfr. [2]). ]



Proposition 2.
The forgetful functors U : Pr(H,T) » Pr( H) and U : Sh( H, T) - Sh( H)

preserve and reflect filtered colimits.

In any algebraic category the filtered colimits are computed as in the catego-
ry of sets. In Pr( H,T) and Pr( H) all colimits are computed pointwise. There-

fore the filtered colimits in Pr( H, T) are computed as in Pr( H).

To compute an arbitrary colimit in Sh( H, T) or in Pr( H, T), we need to
compute it in Pr( H, T) or Pr( H) and apply the associated sheaf functor. But
filtered colimits are computed in the same way in Pr( H, T) and Pr( H) and the
associated sheaf functor preserves them. So the result holds in the case of

sheaves. N

Proposition 3.
In Pr( U, T) and Sh( H, '), finite limits commute with filtered colimits.

This is true in any algebraic category and hence it is in Pr( H, T) where
limits and colimits are computed pointwise. In Sh( H,T), a limit or a colimit
is the reflection of the corresponding limit or colimit in Pr( H, T); as the reflec-
tion preserves colimits and finite limits, the commutation property transfers to

Sh(H, ). m

If u is some element in H, we denote by hu : 1P & Sets the presheaf repre-
sented by u; the continuity of a representable functor implies immediately that

hu is in fact a sheaf.

§ 7. ALGEBRAIC YONEDA LEMMAS

Proposition 4.
Consider u € H and A € Pr( H, ). The following natural isomorphism holds

A(W) ¥ (Fh, A).

|

A(w) = UA(W)
(h,, UA) Yoneda lemma
(F h, A) adjunction F 4 U. [



