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SESSION 1

Superconductors as Nonlinear Magnetic Materials
Charles P. Bean

General Electric Research Laboratory
Schenectady, New York

Superconductivity occurs in a wide variety of metallic elements
and compounds - twenty-five elements and about four hundred alloys
and stoichiometric compounds at last countl, The highest tempera-
ture that marks the transition from superconductivity to normal be-
havior is a little over 189K (Nb3Sn) and since for most purposes
one must work well below this critical temperature, almost”all
experiments and devices employ liquid helium, Since this refrigerant
is now widely available at about six dollars a quart together with
rugged containers that evaporate two quarts/day in normal heat leak,
the main economic barrier to the use of the unique properties of
superconductors has been lowered if not eliminated.

These unique propertiesz, as exemplified by lead, include the
property of zero resistance (an induced current in a lead toroid
flowed for over two years with no detectable diminution) as well as
the fact that no flux will enter the bulk of a superconducting
sample (Meissner effect). These properties can be summarized by
the equations 9 = 0 and B = 0 where $ and B are the resistivity
and flux density respectively,

These two properties are at the base of all applications of
superconductors. Zero resistivity (or at least very low loss)
gives interest to the high-field superconductors discussed by
Kunzler while this zero resistance coupled with the switching to
normal resistance in a magnetic field accounts for the unique
properties of superconducting switching, logic and storage elexents
described by Hagedorn. Buchhold's applications of bearings and
gyros depend on the complete diamagnetism implied by B = 0.

We now distinguish two types of superconductors, type I and
type II. The type I superconductor (most pure superconducting
elements are of this type) has a particularly simple magnetic
behavior. 1In a macroscopic specimen, the flux demsity is zero
for fields less than the critical field, Hc, that marks the limit
of the superconducting state. Above this field the specimen has
all the properties of a normal metal including the property that

-2-

the field is essentially equal to the applied field. So, in
-summary, the type I superconductor is either completely supercon-
ducting or completely normal. (This statement is strictly true only
for a long thin specimen in a field that is parallel to the axis

of the specimen. With other geometries one finds a gross mixture
of superconducting and normal regions called the intermediate state
that is created by the field concentrations assoginted with specimen
shape.) In recent years it has been appreciated” that there is
another class of superconductor - usually an alloy or compound -

in which, for a bulk specimen, flux is completely excluded for
fields less than H;), but above this field flux penetration is
partial and increagses with applied field until bulk flux penetration
is complete at an upper critical field, Ho2. Since this field is
generally larger than the equivalent H; of type I superconductors,
these type II superconductors are known as high-field superconductors.
The region between and Hgp is known as the mixed state which is
not to be confused with the shape dependent intermediate state
mentioned earlier. We made the proviso above that Hg2 denotes the
field limit of bulk flux rejection since it has been found recently
that a very thin film of superconducting electrons coats the szrface
of the material until a higher field H.3, where Ho3R% 1.7 He2.

The present conception of the mixed state pictures the flux
as entering in the form of quantized current vortiges. The total
flux contained in each vortex is 2 x 10-7 gauss-cm?. In equilf-
brium these vortices repel one amother to form a lattice that com-
presses as the field is increased from He) to He2 and finally all
flux variation in the bulk of the specimen smoothly disappears at
He2. Magnetization measurements on homogeneous alloys show good
*agreement with this theory.

If the type II superconductor is inhomogeneous, there may be
impediments to the motion 8f these flux lines. In this event there
will be a gradient of flux® as the flux is drivem into the specimen.
This gradient of flux lines is equivalent to a macroscopic current
density by Ampere's Law, curl H = 4 J/10. This observation allows
one to calculate the magnetic behavior of these superconductors in
terms of only one parameter, the critical current density, Jc(H)7 -
the same critical current density that is measured in current
transport measurements. The magnetic behavior deduced from this
approach and measured experimentally includes size dependent
magnetization properties and a hysteresis loop that is the precisge
diamagnetic equivalent of the Rayleigh hysteresis loop for ferro-
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magnets. This last nonlinear effect gives rise to calculable
losses in alternating fields as well as generation of harmonics of
the exciting frequency.

In summary, superconducting mgterials show monlinear magnetic
properties that are closely analogous to those of ferromagumets.
The diamagnetic equivalents of square-loop magnets as well as
Rayleigh loop magnets exist -and are quite well understood - these
properties, coupled with the phenomenon of zerc resistance, way
form a new area for the application of the concepts of nonlinear
magnetics.

1-1-2
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HIGH FIELD-HIGH CURRENT SUPERCONDUCTIVITY AND
SUPERCONDUCTING MAGNETS

J. E. Kunzler#

Considerable effort is being directed toward the construction of superconducting
magnets, as well as toward increasing our understanding of high field superconductivity.
This increase in activity has followed the unexpected discovery, nearly three years ago,
that N'bssn could remain superconducg.ing in a u\Egneti_c field of 88 kgauss while sustain-
ing a current density in excess of 10~ amps/cm”. The hope of constructing a supercon-
ducting magnet capable of generating magnetic flelds of strengths near 100 kgauss is not
new; Onnes suggested this possibility” soon after he discovered superconductivity in
1911, 7 However, his dreams ended when he found that a magnetic field of a few hundred
gauss destroyed superconductivity in the materials known at that time. 4 In the 1930's
the possibility of using Pb-Bi alloys for superconducting magnets which were expected
to be capable of a fnore modest field of about 20 kgauss was suggested. 5 However, the
idea was abandoned after some discouraging observations® and the widespread impres-
sion developed that superconducting magnets, capable of even as much as a few kilo~
gauss, were not practica1;7 it is now known8 that Pb-Bi could be used for superconducting
magnets having capabilities approaching those suggested, Progress toward practical
superconducting magnets was made in 1955 when an iron core electromagnet using wind-
ings of superconducting niobium was reported to generate a field of about 7 kgauss.

In 1960, Autler reported 0 an air core solenoid, constructed of hard-worked niobium
wire, that produced a field of 4.3 kgauss. A little later, a superconducting solenoid
constructed of a Mo-Re alloy and capable of a field of 15 kgauss was reported. 11 The
phenomenal properties of Nb,Sn were reported in early 1961 and it then became apparent
that superconducting magnets capable of fields approaching 100 kgauss would become a
reality. © Results of investigations that ghowed that Nb-Zr alloys were also useful for
superconducting magnets were quick to follow, 8,12,13 Activity mushroomed and by late
1961, other potential materlals were 1'ept>r':edx14 in addition several laboratories re-
ported superconducting solencids capable of fields near 70 kgauss. 15,16,17 gince then
feasibility models of solencids, capable of fields as large as 100 kgauss, have been
constructed!8 and operational magnets capable of fields at least this high seem likely
by the time of this conference.

1

The problem of generating high magnetic fields with solenoid magnets constructed
of ordinary conductors are ffsmidable; magnetic materials, such as iron, are of little
assistance above 30 kgauss. It requires about 2 megawatts of power, about 1000
gallons per minute of cooling water, and costs a substantial fraction of a million dollars
to produce a few cubic inches of continuing field at 100 kgauss. There are less than
about 2 dozen installations known that have this capability in the world; furthermore,
higher fields are rare since the power requirements increase more rapidly than the
square of field., However, once a magnetic field is established, in principle, no power
should be required to sustain it; the electrical power is converted to heat due to the
resistance of the windings. Since superconductors have no resistance, their use elimi-
nates this problem.

#Bell Telephone Laboratories, Inc., Murray Hill, New Jersey
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Our understanding of high field superconductivity has advanced considerably during
the past three years. Superconductors can be divided into two types: Type I and Type L.
Type I superconductors have low critical magnetic fields, tend to have reversible proper-—
ties, and are not EBitable for high field magnets. As a result of considerable work by
Russgian theorists  and others  (kmown as the GLAG theory in honor of its originators),
an ideal reversible state of Type II superconductivity can be accounted for in high fields.
However, these ideal Tz?ezlsl superconductors cannot sustain a transport current and
require "flux pinning, "““’ “? obtained by introducing defects or inhomogeneities into the
matexial, before they are useful for magnets. Most properties, such ai the maingti.za-
tion of high {zeld-high current superconductors are highly irreversible. 4 Bean”> and
Berlincourt™ have recently published good reviews of the physics of high field super-
conductors.

At the present, two materials, ductile Nb-Zr alloys and the brittle compound
Nb,Sn, are being used extensively for superconducting magnet fabrication. Nb-Zr has
the advantagez_,of ductility but it also suffers from some disadvantages. It has a lower
critical field”" (about 70 kgauss for the composition most conimoféy used); wire in mag-
nets is unable to sustain as much current as in short lengths, 516,17, 2 and solenoids
are subject to "training" and '"'proximity" effects. In general, the critical magnetic
field is independent of the mechanical state of Nb-Zr alloys while the critical current
densgity increases significantly with increased deformation. °* However, it has beeT
shown that the critical current can also be increased by appropriate heat treatment. 3,32
Nb-Zr magnets are being produced commercially by organizations such as Avco, Linde,
Magnion, Westinghouse, Varian Associates, etc.

Nb_Sn is brittle and thus requiﬁzs special techniques for its fabrication into mag-
nets. RaA has described a process™~ which relies on the existence of some degree of
ductility in thin layers of NbBSn deposited on a ductile substrate, The National Research
Corporation has dfvgloped a similar structure. Bell Telephone l.aboratories has de-
veloped a process ’ in which unreacted niobium and tin powders are enclosed within
the core of a "wire" which is reacted by heating to near 1000 C to produce brittle Nb_Sn
in the core of the wire after the solenoid is wound. The process haa proven to be more
successaful than might have been expected for such a complex configuration; many con-
tinuous lengths of wire, each over 10, 000 feet long, have been produced. The charac-
teristics of Nb,Sn cored "wire' are seneitive to such parameters as particle airz,e of the
Nb powder, ini%ial composition, time and temperature of the reaction, etc. 35,3 The
performance of Nb,Sn cored "wire'" magnets has been very satisfactory; none have
failed due to use or thermal cycling. It appears that this process will be useful for
magnets capable g{l £i3§11d strengths approaching the critical field of Nb3Sn which is 200
kgauss or above,”"’

There are many problems associated with the use of superconductora for genera-
tion of magnetic flelds. They include, refrigeration of the solenoid to liquid helium
temperature (4. ZOK), removal of heat and the avoidance of instability when the magnetic
field strength is changed (due to the irreversible magnetization of the superconductors),
prevention of flux jumping which originates from the same source, handling of the ener-
gy of the magnetic field when the solenocid '""goes normal, " avoidance of shock waves and
high voltages resulting from rapid collapse of the magnetic field, structurally restrain-~
ing the magnet against the mechanical forces on the windings (there is a radial force at
the midsection of a solencid resulting from the "pressure of the magnetic field" which
varies as the square of the field and is approximately equal to 6000 psi at 100 kgauss),
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Some of these problems are new and some become formidable when the volume or the
strength of the field becomes large. However, they all appear to be capable of reason-~
able solutions. ’

High field-high current superconductors are too new for many of their potential
applications to be apparent., Until the advent of these materials, it was generally not
realistic for an engineer to think of devices Trequiring magnetic fields of 50 or 100 kgauss.
Some of the more obvious potential applications include high magnetic fields for a wide
variety of research activities, magnets for particle accelerators and bubble chambers,
magnets for controlled thermonuclear fusion (in the event it proves to be feasible), mag-~
nets for magnetohydrodynamic power generation, high field-high current superconductors
for high power dc transmission systems, and the shielding and shaping of magnetic fields.

The discussion and references are intended to be illustrative rather than complete,
More details and additional references can be found in the references cited,
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