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Introduction

In the eighties, Horst Michel organized two conferences “Ergodic theory and Related Topics
I and II” held in 1981 at Vitte (Hiddensee), GDR and in 1986 at Georgenthal (Thuringia),
GDR. These conferences succeeded in bringing scientists from the East and the West together.
Ergodic theorists from Austria, CSSR, France, FRG, GDR, Great Britain, Greece, Japan, the
Netherlands, Poland, USA, USSR, and Vietnam discussed their recent results in measure—
theoretic and topological dynamical systems as well as connections to other fields. A third
conference was in the planning when Horst Michel, his wife Jutta, his younger daughter
Kathrin and his mother died in a tragic car accident in December 1987. His colleagues all
over the world lost a good friend.

Horst Michel was born in a little town in Thuringia. He studied mathematics at the Univer-
sity of Leipzig. As an assistant at the Technical College Ilmenau and at the University of Halle,
he worked on iteration groups of real valued functions using methods of functional analysis.
His thesis (1961) dealt with “Continuous and monotone iteration groups of nondifferentiable
real valued functions”. He then turned to the study of measure theoretical properties and
of the classification of special groups of measure preserving transformations. Stimulated by
articles of K. Jacobs, H. Furstenberg, and W. Parry, he explored the class of totally ergodic
dynamical systems with quasidiscrete spectrum, in particular their embeddability into a flow.
After 1970, he became interested in topological dynamics and studied so—called configuration
spaces on special lattices. A list of his publications appears in “Kongreff und Tagungsberichte
der Martin-Luther-Universitit Halle-Wittenberg 1989/54”.

Ipse abiit e vita. Remanebunt opera studiumque viri valde estimati in scientias mathemat-
icas posita.

The idea of having a third conference was not given up. Horst Michel’s students Karin
Richter-Hasler and Volker Warstat organized it, and it was held in October 1990 in Gistrow,
GDR, although the political events of 1989-90 caused various difficulties quite different from
those of previous years. Fortyfive colleagues from 9 countries participated. This volume
contains those results which are not published elsewhere. We thank all the participants of
the conference for contributing towards its success, all the authors for their good cooperation
with the editors, and the Martin—-Luther—University at Halle-Wittenberg for sponsoring the
conference.

Our special thanks go to all colleagues who offered their advice in preparing these Pro-
ceedings, especially Prof. M. Denker from Géttingen.

Gottingen and Halle Ulrich Krengel
March 1992 Karin Richter-Hasler
Volker Warstat
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Symbolic dynamics for angle-doubling on
the circle
I. The topology of locally connected Julia
sets

Christoph Bandt and Karsten Keller

Fachbereich Mathematik
Ernst-Moritz-Arndt-Universitat
D-0-2200 Greifswald, Germany

1 Introduction

The study of the dynamics of complex polynomials leads to some problems which
belong to topology, combinatorics and number theory rather than complex function
theory. Douady and Hubbard used trees to study Julia sets [6, 7], and Thurston [15]
introduced invariant laminations of the circle. Our point is to show how symbolic
dynamics can be used to strengthen and clarify their results. We restrict ourselves
to quadratic polynomials although some of our results extend to polynomials or to
invariant factors of shift spaces [1].

The basic concepts are simple. We consider the circle T = R/Z and the angle-
doubling map h: T — T, h(B) = 28 mod 1. Fix a € T. The diameter between § and
241 divides T into two open semi-circles Ty" and Ty*, where the fixed point 0 =1 of A
shall belong to Ty*. The itinerary of a point f € T with respect to «a is defined as

0 for A-YB)ETS
Ia(ﬂ) = 515253... Wlth 8 = 1 {Or h'—l(ﬂ) e T](.]
x for AYP) € {%, 2}

The itinerary of « itself, & = I*(a) , is called the kneading sequence of a. In rough
form, our main ideas can be stated as follows.

1. When the Julia set J, of p(z) = z2 + ¢ is locally connected and c has external
angle a then J; is the quotient space of T obtained by identification of points
with equal itineraries.

2. If the boundary of the Mandelbrot set is locally connected, it is the quotient
space of T obtained by identification of points with equal kneading sequences.

3. If we confine ourselves to a with @ = I%(1 — «), we obtain all itineraries and
kneading sequences of real unimodal maps [5, 12].



In the present paper, we shall work out the first point and its consequences: the T
form a Markov partition in the tree-like (non-hyperbolic) case, the branching points
of the Julia set can be read from & (sec. 6-8) and renormalization can be expressed by
substitution of words (sec. 11).

We describe those J. which are locally connected but the abstract theory is more
general, and in some respect more beautiful than the reality of complex polynomials.
To each angle a on T we construct an abstract Julia set as a quotient space of 7. We
shall distinguish three cases: the 'tree-like’ case that & is not periodic, the case where
a is periodic under h, and the 'Siegel disk’ case where « is not periodic but & is.

We prove uniqueness of J in all three cases. Beside the fact that a critical point
in J cannot be periodic, we only assume that J is obtained as a quotient of T by a
homotopic process in the plane (external rays, cf. sec. 2). This topological condition is
crucial for using laminations. In the tree-like case our assumption is a bit weaker (see
below). Differentiability is not required in the present paper. Let us note that every
continuous, orientation-preserving two-to-one map A’ on T' with a single fixed point is
conjugate to h, so that our topological methods will work for A’ as well as for A.

There exist locally disconnected J, [6, 3, 11] but by the recent remarkable results of
Yoccoz (cf. Hubbard [8]) these examples are rare exceptions. It seems that the question
whether J, is locally connected belongs to conformal geometry rather than topology.
Roughly speaking, certain topological spaces are too complicated to become realized
by the conformal mapping p..

To give an impression of the technique, we state a few definitions and results.
For fixed a, two inverse branches of h can be defined as (¥ : T\ {a} — T7,
+ =0,1. A closed equivalence relation ~ on T is said to be an a-equsvalence if

(@) §~ 3
(b) B~ implies A(B) ~ h(y)
(c) B~7, B,7v# a implies I§(B)~I§(v) and I§(B) ~ (7).

For each a, there is a minimal a-equivalence ~, which corresponds to Thurston’s
minimal lamination. The dynamical a-equivalence =, is given by the equality of a-
itineraries, with * used as a joker for both 0 and 1. We show (sec. 3,4) that for all a in
T, the space T/ = is the invariant factor [1] of the one-sided shift space {0,1}*, given
by the generating relation 0& ~ 1&. Let us say that an a-equivalence ~ is degenerate
if the equivalence class of 7 is periodic under the map h induced by A on T/ ~ . In
sec. 7 we prove

Theorem 1. (Uniqueness of a-equivalences in the tree-like case)
For non-periodic & , there is only one non-degenerate a-equivalence. Thus minimal
and dynamical a-equivalence coincide. If the point ¢ belongs to J, and has external
angle  , then (J;, pc) is homeomorphic to (T'/ =4, l'z)



For the Siegel disk case (sec. 9), the dynamical equivalence will collaps certain
Cantor sets and the minimal equivalence will turn them into circles. The latter yields
the proper topology. In the periodic case (sec. 10), both equivalences coincide and
collapse certain Cantor sets. These will turn into circles when instead of (a), a is
identified with a well-defined ”conjugate point” §.

To give an idea on how branching points of J; are connected with &, consider the
fixed points of p. which correspond to itineraries T = 111... and 0. The first one is
always an endpoint of J, while the second is a branching point with k 4+ 1 branches if
& starts with 0¥1. In fig. 1, & begins with (001)® but not with (001)*, which implies
the existence of branching points with four branches, associated to the sequence 001.

Remark of the first author: in November 1987, six weeks before his death, I met
Professor Horst Michel in a curriculum committee and showed him my first rather
vague ideas on these questions. In his kind manner, he became interested, gave hints
and said he would certainly like to read a written outline. Let me express my gratitude
for his encouragement which has contributed to [1, 2] and the present paper.

Fig. 1. A Julia set and the corresponding lamination (a = 0.143)



2 Parametrization of locally connected Julia sets

We recall some well-known facts [3, 11] concerning Julia sets of p.(z) = z?+cin a topo-
logical version. For ¢,z € C , let O(z) = {z,p.(z),p3(2), ...} denote the forward orbit
of z, and call K. = {z € C| O.(z)is bounded} the filled-in Julia set. The boundary J;
of K, is said to be the Julia set of p.. Ko = D is the unit disk.

If J, is connected, there is a unique conformal isomorphism ®.: C\ K, = C\ D
with lim,_ . ®.(z)/z = 1 which conjugates p. and po, i.e. ®.p.®-1 = po .

Let us define a potential u.(z) = ®.(z) on C\ K, with field lines

B.={z € C\ K |arg(®.(z) = 2xp}
([6], p-65). Then the mapping h(3) = 2 mod 1 fulfils
p(Bc) = (h(B)). and —pfc=((B+3) mod1l) forall Be€01[

According to Caratheodory’s theorem, each field line 8, has a continuous extension to
a unique point zg of J. , and each point of J. is obtained in this way, if and only if J.
1s locally connected. If the field line §; ends in z € J., § is called an external angle of
z.

Thus in the locally connected case ¢ () = Zgmoda1 and 7 (8) = ¢ (—p) are two
parametrizations ¢ : R — J. of J. . They are continuous and periodic with minimal
period one, and they fulfil the equations

e(28) =¢(B) +c and —p(B)=9(B +3}), BER (1)

Proposition 2. Let ¢ € C . Then J. is locally connected iff the functional
equations (1) have a continuous periodic solution. In this case, J, = ¢(R) .

Moreover, every continuous solution of (1) with minimal period 1 coincides with either
P Of ¢ .

Proof. Since the first equation has no constant solution for ¢ # 0, we can assume
@ 1s a continuous solution of (1) with minimal period q. We show that ¢(8) = ¢(8/q)
agrees with ¢, or ¢; . The set of all rationals with odd denominator is dense in R, and
all points of $(A) are periodic under p. , hence contained in J. , with a finite number
of exceptions. Since @(R) is connected and infinite, this shows g(R) C J, .

Moreover, if z € @(R) , then by (1) the points of p7!(z) — and hence the limit
points of the backward orbit of z - also belong to $(R) . Thus ¢(R) = J, , and J, is
locally connected.

Now take 8o € R such that {2"fy mod 1|n € N} is dense in [0,1[ . There is an
r € R with ¢ (rfo) = $(Bo) , hence @ (rB) = @(B) for § = 2", and then for all
B € R. Since ¢, and ¢ have the same minimal period, r = £1 . m

Thus, from a topological point of view, a locally connected J, is a factor space of the
circle compatible with the angle-doubling function A [6, 7]. Now suppose 0 and hence
¢ belongs to the locally connected Julia set J. , and « is an external angle of ¢. Since
0 is the only preimage of ¢ under p. and ¢ (a) = ¢, we obtain ¢ (5) = cpc(g’—;i) =0.
Each other point ¢ () has exactly two preimages under p., and it is easy to check
that the equivalence relation g = v if ¢.(8) = ¢.(7) is an a-equivalence.



On the other hand, each a-equivalence ~ defines a factor space J of T and a map
h : J — J such that the projection ¢ : T — J is a semiconjugacy from A to k (i.e.
wh = hp). Moreover, h has two inverse branches I3 and I defined on the whole set
J: just let [%(p(a)) be the equivalence class of & for i = 0,1. Clearly, J is Hausdorff
iff ~ is closed [9]. We say ~ is non-degenerate if the equivalence class of § is not
periodic under h. An a-equivalence associated with the Julia set of some p, must be
non-degenerate: if O has a periodic orbit, this orbit is superstable. For each «, the
smallest a-equivalence (the intersection of all a-equivalences in T x T') will be called

a -

3 Invariant factors of shift spaces

In [1] we introduced a concept related to a-equivalences: factor spaces A of the one-
sided shift space {0,1,...,m}* with mappings semiconjugate to shift maps. Here we
shall only need a special case.

Let {0,1}* = U2,,{0,1}" be the set of 0-1-words w = wyw,...w, , and {0,1}*
the set of one-sided sequences s = s;55... . Let A denote the empty word, |w| the
length of w, ws and w* the concatenation, @ = www... the periodic sequence and
Sin = S1...5n the initial subword of s with length n for w € {0,1}*, s € {0,1}*° . On
{0,1}* we have the left shift o(sy1s2...) = s253... and right shift maps 7, 7 defined
by mi(s152...) = 5182... .

An equivalence relation ~ on {0,1}% is said to be invariant (strongly invariant in
[1]) if for all 5,t € {0,1}*

(a) s ~t 1implies o(s)~ a(t)

(b) s ~t implies 7o(s) ~ 7o(t) and Ti(s) ~ 7(2) .

If ~ is closed, the compact Hausdorff space F = {0,1}*°/ ~ is called an invari-
ant factor. On F there are continuous maps &([s]) = [o(s)] and 7([s]) = [n(s)],
t = 0,1. Conversely, a given compact Hausdorff space A is (homeomorphic to) an
invariant factor iff there is a continuous & : A — A with exactly two inverse branches
o, 71 (that is, &+ 7o = & - 7} = td4 and A = Ty(A) U 71(A) ), such that

() 7oy« Tsye-..- Ts,(A) isasingleton o(s) foreach s € {0,1}*. (2)
n=1

If (2) is true, then s ~ tiff (s) = 9(t), and 9 is the projection onto the factor space.

Example. Let A = [0,1] and & the tent map, 5(z) = 2z for 0 < z < 1 and

3(z) =2(1—x)for ; <z < 1. Condition (2) is fulfilled for 7y(z) = 5, 7(s) =1- 3.
The fixed point of 7 i1s (0) = 0. So 010 and 110 are the two sequences assigned to the
critical point } since %(3) = 0. In fact ~ is the smallest invariant equivalence relation
which identifies 010 and 110. Since k(z) = 2cos 7z is a conjugacy from & to p_s, this
invariant factor can also be considered as Julia set J_; = [-2, 2].

If A = 7(A)U 7 (A) is an invariant factor, the points z € T(A) N 7 (A) will be
called critical points since &(z) has no other preimage than z. We are interested in
factors with a single critical point. These spaces are dendrites (simply connected Peano



continua) and hence embeddable into the plane [9]. Note that all locally connected
and connected J, with J. = K, belong to this class.

We give a construction for such factors. For s € {0,1}* , let ~; be the smallest
closed invariant equivalence relation containing the identification 0s ~ 1s and F(s)
the corresponding factor. If s is not periodic, ~; is algebraically generated by the
invariance condition (b):

r ~,tiff r =t or there is a word w with r = w0s,t = wls or r = wls,t = w0s.

This relation is closed since the sets U, = {(r,t)] s, = ¢, for ¢+ =1,...,n} form
a neighbourhood base of the diagonal in {0,1}* x {0,1}*, and only finitely many
non-trivial equivalence classes intersect the complement of U,.

A closed invariant ~ generated by a single equation ¢ ~ wt looks more complicated.
Condition (a) impliest ~ w"t forn =1,2,... and t ~ W. Moreover, if t = 7 1s periodic,
all ut with v € {v,w}* and hence {v,w}* belong to the class of ¢.

Thus for s = u0 as well as for s = u1, the equivalence class of s with respect to ~;
contains e; = {Ou,1u}*. If |0u| = |1u| is the minimal period of s, then o*(e;)Ne; =0
unless & is a multiple of |Ou|, and e, is a full equivalence class. If s has smaller period,
the class is larger. For example, v = A, # = 000 and u = 1 all yield the trivial relation
o, = {0,1}%.

Theorem 3. (Classification of topologically self-similar dendrites with two pieces)

(a) A compact space A is an invariant factor with a single critical point iff
A = F(s) for some s € {0,1}%.

(b) The non-trivial equivalence classes of ~; are the sets we;,w € {0,1}* ,
where o, = {0s,1s} for non-periodic s and e; = {Ou,1u}* for periodic s
with minimal period %0 or 1.

(c) ~; has finite equivalence classes iff s is not periodic.

(d) Forall s,t € {0,1}*U{0,1}* we have ~;C~ iff o, C o, .

Proof. For the remaining part of (a), suppose A is an invariant factor with one
critical point {z} = Fo(A) N 71(A) , and £ = p(0wr) = @(lwt) with w = wy...w,
and r; # ti. The o-invariance implies r ~ t |, so p(r) = ¢(t) = z . As above,
Owr ~ r ~ t ~ lwt yields an equivalence class e containing {Ow, 1w}*.

Now we claim that e # {Ow,1w}* implies the existence of some k¥ < n with
o D {Owy...w, 1wy ... wp}*. Indeed, a sequence in o \ {Ow, lw}* can be written as
ujw ... wyv, where u € {Ow,1w}*, 7 € {0,1},k < n and v € {0,1}*, vy # wiyy. Since
ujwOw also belongs to e, we conclude v ~ wy,; ... w,0w by o-invariance. Since we
have only one critical point, these two sequences belong to o. Now jw,... wye C e
since v and jw; ... wiv are in o, and (1 — j)w; ... wye C o because wi;1 ... w,0w and
(1 — j)wOw are in ». The claim is proved.

When we apply the above conclusion finitely often, we either end with ¢ = {0, 1},
or with ¢ = {Ow', 1w'}*®, where w' is a subword of w. This proves (a), and the other
assertions follow easily. m



4 Itineraries and kneading sequences

Let X be a topological space, f : X — X a continuous map and P = {P,, P,,...} a
partition of X. The symbolic dynamics of a point z in X with respect to f and P is
the sequence I(z) = s153... with s, = k iff f*~'(z) € P;. This is an old idea. The
binary representation &8) = bibs ... of B € T, for instance (with ...T excluded), is the
dynamics of B with respect to h and P = {[0, 3, [}, 1[}. Our I°(B) (sec. 1) is obtained
from &) by writing ¥ for 0 and w* for w10.

For the topologist it is somewhat disgusting that I is not a continuous map unless P
consists of open-and-closed sets. However, in our case P contains the open semi-circles
T¢ and T¢ which both become closed when we add the rest, P* = {, t1}. Using *
as a joker for both 0 and 1, and replacing the shift space by an invariant factor, we
shall succeed in making I* continuous.

We start with some simple remarks. The n-th coordinates of I/*(8) and I°(f) are
different iff A"~1(B) lies in [0, %] or [, 21]. Thus we can calculate itineraries directly
from the binary representa.tion

b(B) for o'(Ha)) > uPp)
I%(B) = s182... with s, ={ 1-b(8) for o' (¥a)) < uB) (3)
* for o'(Ya))=YP)

The kneading sequence & = I*(«) always starts with 0. Since I*(8) = I'"*(1 - 8)
and in particular & = 1= a for all a, 8, we assume throughout that a < %

A point 3 € T is periodic under A iff it is 0 = 1 or rational with odd denominator: g8
has period p if we can write 8 = m /(2P — 1) . Periodic points have periodic itineraries.
The converse is true, except for one case (see proposition 6.2). & is periodic iff it
contains *.

B is called preperiodic under h if some h*(f) = h"*P(B) for some minimal n, p but
B is not periodic. These are the rationals with even denominator, § = m/2"(2?F —1).
Preperiodic points have preperiodic itineraries, and a preperiodic a has preperiodic &.
(To see that & is not periodic, write &a) = by ... bebry1 ... beyp with by # bryp. By (3),
&(k) # a(k +p). )

For 8 # a let I?(f) be the point in T N {#/2,(8 + 1)/2} , + = 0,1. Now take a
word w € {0,1}". The mapping I = I -... IS is defined and continuous on the
set of § € T with h'(a) # 8,4 =0,...,n — 1. It is easy to see that Ty = I%(T) is the
set of all § such that the itinerary I%(f) starts with w. This is a finite union of open
intervals, with total length 27". The itineraries of the endpoints of the intervals are
obtained from w by replacing one or more w, by *. If we define

Ce={B eT|I*B)s) € {w;,*} fors =1,...,n},

then C2 D T2. Moreover, equality holds unless « is periodic. (If a point 8 € CZ is not
in T and neither a right nor a left endpoint of some interval of TJ, there must exist
two different integers 1,7 < n with h(8) =W (f)=a.)

Now let ¢t € {0,1}* , and write ¢}, for ¢, ...t, . By compactness,

[o0)

Cs:= {61 I°(B)(3) € {t,#} fori=1,2,.. } = m L2 NI




There are points with itinerary ¢, maybe with some ¢, replaced by *. However, the * in
an itinerary has to be followed by & , so there are points with proper itinerary ¢ unless
t has the form wa.

Let us define what we call the dynamical a-equivalence on T. If 8,7 are points
such that for each 1, either /*(8)(3) = I*(7)(3) or I*(B)(s) = * or I*(y)(¢) = * , then
B and v should be equivalent. Let =, denote the smallest closed equivalence relation
with this property.

If & is non-periodic, then 8 =, 7 iff either I%(8) = I*(vy) or I*(f) = wuéd and
I%(v) = wvé for some w € {0,1}* and u,v € {0,1,*}. If & = w*, u0 or ul for some
word u, all points with itineraries in w{Ou, 1u, *u}* are identified for each w.

Theorem 4. (Invariant factors of the circle are invariant factors of shift space)

(a) For each a in T, the spaces T/ =, and F(&) are homeomorphic, and
the homeomorphmm 1s a semiconjugacy from h and l" to & and 7.

(b) =4 1s degenerate iff & is periodic.

Proof. We saw that I® can be considered as a map from T onto F(&), with f =, v
iff the itineraries represent the same point of F(&). We show that I is continuous,
hence a quotient map. Basic neighbourhoods of I*(y) are given by fixing a finite
number of coordinates of I*(y) which are # *. For all § sufficiently near to 7, the
itineraries of # and vy will agree in these coordinates. Observing that I*(h(B8)) =
a(I*(B)) and I*(IX(B)) = n(I1*(B)) we finish the proof of (a). If & = ux then e is
invariant under &"“*! while for non-periodic & , the image of « = {0&, 1&, *&} under "
does not contain a point of e for any n. = '

Remark. Since we proved that all 0-1-sequences are itineraries with respect to
every a (provided * is used as a joker) we should also mention that only few sequences
are kneading sequences. Some 0-1-words, as 010011, cannot be initial subwords of any
&. In fact, & starts with 01 iff 2a > "zi Now since 2 > 4a > a + 1, the next digits
001 imply 4a< %2, 8a >3+ ¢ and 16a—6 €)%, 2af. This means 32a mod 1 is
in Ja, ©4[ so that the sixth letter of & must be zero.

5 Invariant laminations

Thurston [15] uses a more geometric approach. He considers T as the boundary of the
unit disc D. A lamination of the disc is a set S of chords of T such that US is closed
in D, and that any two of these chords do not intersect except at their endpoints (cf.
fig. 1). Points of T are considered as degenerate chords. A gap of S is the closure of a
component of D \ US. For any chord or gap S € S let A(S) = conv A(S NT), where
conv means convex hull. The lamination S is called invariant with respect to A if [14]

e For each chord S in &, the image chord A(S) and the opposite chord —$ belong
to S, and there is a chord S’ with A(S') =5

Obviously, every S will have two preimage chords so that the conditions are almost
the same as in the definition of a-equivalence. Let us fix a non-periodic a and construct
an invariant lamination containing the chord S, = conv {$, %f1}. Let w be a 0-1-word.



Besides C, = Cg = ﬁ we now consider D, = conv C,, , and we define S,. to be the
chord in D connecting ly(F) and lw(%l). Then Sy, = DwoNDy1 and Dy = DyoU Dy,
which can be proved by induction on |w].

Let S* consist of the S,., w € {0,1}"*, and of their limit chords. It is not difficult
to see that S is the smallest invariant lamination containing S, [15], prop. II.4.5.
Moreover, S® defines the minimal a-equivalence: g ~, v iff § and 74 can be joined
through a finite number of chords from S®. (An elementary argument shows that this
defines a closed relation.)

This lamination is tightly connected to our itineraries. By construction, each gap
is obtained as D{ := conv C; = (72, D, for some s € {0, 1}*. Moreover, each chord
in S* which does not bound a gap also coincides with some D,. Thus the family of all
gaps of S* , and of all chords not contained in gaps, coincides with the family conv
C,, s € {0,1}.

Let S be a chord, a the length of the subtended arc. Note that a < ] since T has
perimeter 1. The length a’ of the arc subtended by A(S) is given by the tent map:
a’ =2afora< }and @ =1-2afora> } This implies a simple but important fact
([15], 11.5.1):

Lemma 5.1 Among all chords A*(S), + = 1,2,... the first chord longer than §
coincides with the first chord which lies between S and —S. =m

The following result of Thurston [15] is a combinatorial analogue of Sullivan’s cele-
brated theorem on the non-existence of wandering domains [14]. We give a new proof.

Theorem 5.2 (Thurston’s structure theorem for quadratic laminations)

(a) On (T, h) there are no wandering triangles: If a, 8,7 € T , then some of
the sets Ag = conv {h¥(a), h*(B), h¥(7)}, k =0,1,2,... will intersect each
other, or there exist n such that A; collapses to a chord for £ > n.

(b) If G is a gap in an invariant lamination, there exists an integer n > 0 such
that either

e h™(G) is periodic: A*(G) = A"*P(G) , or
e h"(G) is a triangle with a diameter of T as side,
or a rectangle with a diameter of T as diagonal.

Proof. First we note that (b) follows from (a). Note that A maps each gap onto
a gap or a chord. Given a gap G, take a,8,7v € GNT. If A, and Ay, intersect
then A"(G) = A"*P(G). The same is true if A"(G) and A"*?(G) contain a diameter in
their interior. However, if some Ay collapses, then h*(G) contains a diameter for some
n < k, and if A"*(G) is not a triangle or rectangle, A"t}(G) is still a gap.

To prove (a), let ¢ > b > a denote the arc lengths of the sides of a triangle on
T. Either c= b+ aora+b+c =1, but any two triangles from the latter case will
intersect. Thus we can assume a+b = ¢ < % Moreover, there are at most three disjoint
triangles with ¢ > 1 > b. So we find no such that for k& > no, eithera < b < ¢ < % or
a<;<b<e

Let ¢’ > b > a' denote the lengths of the sides of the image triangle. In the first
case, a’ = 2a, b’ = 2b, ¢ = 2c. In the second case 1 —2c < 1—2banda=c—-b< % -b



