e o Structured
COBOL
A Pragmatic Approach

STRUCTURED COBOL.:
A PRAGMATIC
APPROACH

ROBERT T. GRAUER

University of Miami

MARSHAL A. CRAWFORD

Programming Consultant

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

GRAUER, ROBERT T (date)
Structured COBOL: A Pragmatic Approach

(Prentice-Hall software series)
Previous ed. (c1978) published under title:

COBOL.
Includes bibliographical references and index.
1. COBOL (Comp program language)

2. Structured programming. 1. Crawford,

Marshal A., 1943— L. Title. IIL Series.
QA76.73.C25G7 1981 001.64'24 80-22283
ISBN 0-13-854455-7

To our families

Prentice-Hall Software Series
Brian W. Kernighan, advisor

Editorial/production supervision by Kathryn Gollin Marshak
Interior design by Nancy Milnamow

Cover design by Alon Jaedicker

Manufacturing buyer: Joyce Levatino

© 1981 by Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

PREFACE

We are indebted to the many instructors who have adopted our earlier work, COBOL: A
Pragmatic Approach, and thereby inspired this new book. We further acknowledge the numerous
reviews and thoughtful comments that became the basis for this new approach.

The change of greatest importance is that every illustrative program is structured. This contrasts
with the earlier approach of beginning with an unstructured program in an effort to get students
on the machine as quickly as possible. We still espouse the early “hands on” philosophy, but no
longer introduce unstructured programs only to later reeducate the reader. This comes from our
own as well as the (now) widespread acceptance of structured programming; in short, do it right
from the beginning.

In addition, we are happy to report the following changes and/or additions that have been
incorporated into Structured COBOL: A Pragmatic Approach.

1. Greater attention to pseudocode and hierarchy chart with decreased emphasis on the tradi-

tional flowchart.

Inclusion of material on top down testing, stepwise refinement, and the structured walk-

through.

3. Strict adherence to the ANS 74 standard. (While some IBM extensions and/or deviations
are included, these discussions explicitly state any deviation from the standard.)

4. Revision of most of the original COBOL illustrations to reflect our own increased awareness
and attention to programming style.

5. Inclusion of over 20 additional programming projects (at the end of the appropriate chapters)
for classroom assignment.

6. Inclusion of an appendix on Report Writer, as this once ignored facility appears to be on
an upswing.

7. Expansion of Chapter 18 (OS JCL) to include material on SORT, subprograms, and MVS.
Updating of Chapter 17 (DOS JCL) to include material on DOS/VS.

8. Expansion of Chapter 13 (ABEND debugging) to include the STATE and FLOW options.

9. Expansion of the discussion on indexed files to include COBOL coding differences between
VSAM and ISAM implementation. The former adheres to the ANS 74 standard; the latter
does not.

[\S]

Why another book on COBOL? In recent years, universities have been criticized for failing
to provide computer science and business graduates who are sufficiently versed in commercial
data processing. This statement is partially justified for two reasons:

1. Most COBOL courses provide only “textbook” coverage and are sorely lacking in practical,
i.e., commercial emphasis. Such subjects as JCL, file processing, debugging, structured pro-
gramming, documentation, standards, and testing are glossed over or missed entirely.

2. College curricula traditionally treat COBOL and BAL in separate courses and do not provide
an adequate link between the two. Although the COBOL programmer can and does exist
without knowledge of Assembler, even a superficial understanding promotes superior capabil-
ity to write efficient COBOL and is invaluable in debugging.

The primary objective of this book is to bridge the gap between traditional university curricula
and the needs of industry. We address ourselves directly to the preceding statements and attempt
to produce the well-rounded individual who can perform immediately and effectively in a third
or fourth-generation environment.

The scope of the book is extensive, ranging from an introduction to data processing, to maintain-
ing sequential and nonsequential files. A student may use this book without any previous exposure
to data processing. Students with limited knowledge of COBOL can also use it since complete
coverage will require two semesters. The text is modular in design so that Sections III, IV, and
V may be covered in any order after Sections I and II are completed (see the accompanying

diagram).
Modular Organization
Section |
Introduction to Data Processing
Chapter 1—Introduction
Chapter 2—The Programming
Process/COBOL Overview
Section Il
The COBOL Language
Chapter 3—Procedure Division
Chapter 4—The Other Divisions
Chapter 5—Debugging, |
Chapter 6—Programming Style, |
—————
Section IlI Section IV Section V
More COBOL The Role of BAL File Processing
in Deeper Understandin
Chapter 7—More About the g Chapter 15—Magnetic Tape—
Procedure Division Chapter 12—Necessary Concepts and COBOL
Chapter 8—The Data Division Background Implications
Chapter 3—Tables Chapter 13—Debugging, I! Chapter 16—Magnetic Disk—
Chapter 10—Sorting Chapter 14—Insightinto the COBOL Concepts and COBOL
Chapter 11—Programming Style, Il Compiler Implications
Appendix A —Report Writer Chapter 17—DOS JCL
Chapter 18—0S JCL

X PREFACE

In addition to the material on standard COBOL, there are two chapters devoted to debugging,
two to JCL, two to programming style, two to file processing, and two on the role of BAL in
better understanding COBOL. Although the JCL and BAL chapters pertain directly to IBM systems,
ANS 74 COBOL is emphasized, so that the majority of the text relates to non-IBM installations
as well. Inclusion of the IBM material, however, should enable the book to be used as a “programmer’s
guide” in that it contains a wealth of information that is not usually found in one place.

The authors wish to thank Karl Karlstrom of Prentice-Hall for making possible our entry
into the world of publishing, Steve Cline, our editor, and Kathryn Marshak, our production editor.
We thank our principal reviewers, Dr. Thomas DeLutis of Ohio State University, Dr. Jan L.
Mize of Georgia State University, for their help and continued encouragement. Steve Shatz and
Art Cooper are to be commended for their thoroughness in proofreading the galleys. We appreciate
Ed Ramsey’s help with some of the COBOL listings. We thank our many colleagues for their
fine suggestions; these include Ken Anderson, Peter Baday, Jeff Borow, Les Davidson, Don Dejewski,
Giselle Goldschmidt, Sam Ryan, Sue and Steve Wain, and anyone else whom we inadvertently
omitted. Finally, we thank our typists, Francie Makoske and Deborah Miller, whose ability to
interpret our scratches on yellow pads never ceased to amaze.

ROBERT T. GRAUER
MARSHAL A. CRAWFORD

The following information is reprinted from COBOL Edition 1965, published by the Conference
on Data Systems Languages (CODASYL), and printed by the U.S. Government Printing Office:

Any organization interested in reproducing the COBOL report and specifications in whole or part,
using ideas taken from this report as the basis for an instructional manual or for any other purpose is
free to do so. However, all such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review, are requested to
mention “COBOL” in acknowledgment of the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as
to the accuracy and functioning of the programming system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries concerning the proce-
dures for proposing changes should be directed to the Executive Committee of the Conference on
Data Systems Languages.

The authors and copyright holders of the copyrighted material used herein:

FLOWMATIC (Trade mark of the Sperry Rand Corporation), Programming for the Univac
(R) I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications.
Such authorization extends to the reproduction and use of COBOL specifications in programming manuals
of similar publications.

PREFACE xi

CONTENTS

Preface

Section | INTRODUCTION TO DATA PROCESSING

Chapter 1 INTRODUCTION

Overview, 3 Pseudocode, 8

Punched Card Input, 3 Flowcharts, 9

Printed Output, 5 A First Look at COBOL, 12
Structure of a Computer, 5 Summary, 13

Machine Versus Higher-Level Languages, 5 Review Exercises, 15

The First Problem, &8 Problems, 15

Chapter 2 THE PROGRAMMING PROCESS: COBOL OVERVIEW

Overview, 19 Putting It Together, 29
A Problem-Solving Procedure, 19 Summary, 29

Elements of COBOL, 20 Review Exercises, 30
The COBOL Coding Form, 23 Problems, 30
Keypunching, 23 Projects, 31

Submitting a Program to the Computer, 27
OS JCL DOS JCL

Xi

19

iii

Section Il

THE

Chapter 3

COBOL LANGUAGE

Overview, 35
COBOL Notation, 33
Arithmetic Verbs, 36

ADD SUBTRACT MULTIPLY

DIVIDE COMPUTE

READ, 41
WRITE, 41
OPEN, 42
CLOSE, 42

Chapter 4

Overview, 52

Identification Division, 52

Environment Division, 53
Data Division, 53
Picture Clause, 54

Level Numbers

File Section, 55

Chapter 5

DEBUGGING, I

THE PROCEDURE DIVISION

THE OTHER DIVISIONS

MOVE, 42
PERFORM, 44
1F, 45
Significance of the Period
STOP, 46
Summary, 46
Review Exercises, 47
Problems, 48

Working-Storage Section, 56
VALUE CLAUSE Assumed Decimal
Point Editing Numeric Data

Writing a Complete Program, 59

Summary, 65

Review Exercises, 66

Problems, 67

Projects, 69

Overview, 71

Errors in Compilation, 71
A Second Example, 76
Errors in Execution, 76

Error Detection: The Structured Walk-

Chapter 6

through, &2

Overview, 92
Coding Standards, 92

Data Division Procedure Division
Both Divisions

Structured Programming, 95

iv

Implementation in COBOL Selection
Structure Iteration Structure

PROGRAMMING STYLE, |

Sum.nary, 83
Review Exercises, 86
Problems, 86

34

35

51

71

92

An Improved Tuition Billing Program, 99

Summary, 102
Review Exercises, 102
Problems, 103

CONTENTS

Section Il

MORE COBOL

Chapter 7

Overview, 107
The IF Statement, 107

Class Tests Relational Tests Sign
Test Condition Name Tests Compound
Test Implied Conditions Nested IF’s
PERFORM, 113
INSPECT, 115
Duplicate Data Names, 116

Qualification CORRESPONDING Option

Chapter 8 THE DATA DIVISION

105

MORE ABOUT THE PROCEDURE DIVISION 107

DISPLAY, 118

ACCEPT, 119

READ INTO, 120

WRITE FROM, 120

ROUNDED and SIZE ERROR Options, 121
Summary and a Complete Example, 124
Review Exercises, 126

Problems, 127

Projects, 131

134

Overview, 134

Editing, 134

Signed Numbers, 135
Condition Names, 136
Multiple Records, 137
COPY Clause, 137

A Complete Example, 138
Tables, 141

OCCURS Clause Processing a Table Rules for
Subscripts Suggestions REDEFINES
Clause Table Lookups

Chapter 9 TABLES

Subprograms and the Linkage Section, 146
Summary, 153

Review Exercises, 153

Problems, 154

Projects, 155

158

Overview, 158

Subscripting Versus Indexing, 158
Binary Search, 159

Direct Access to Table Entries, 161
COBOL Formats, 162

OCCURS Clause SET Verb USAGE
Clause SEARCH Verb

Two-Dimension Tables, 164
Table Lookups: A Complete Example,
165

CONTENTS

Two-Dimension Tables: A Complete
Example, 168

Three-Dimension Tables, 171

PERFORM VARYING, 172

Three-Dimension Tables: A Complete
Example, 173

Summary, 177

Review Exercises, 178

Problems, 178

Projects, 179

Section IV

Chapter 10 SORTING

182

Overview, 182

Vocabulary, 182

COBOL Implementation, 183

SORT Verb: INPUT PROCEDURE/
OUTPUT PROCEDURE, 19/

SORT Verb: USING/GIVING, 19!

Chapter 11

Overview, 196

Debugging, 196

Maintainability, 797

Error Processing, 198

Generality, 199

Efficiency, 200

More on Structured Programming, 20!

Case Structure (GO TO DEPENDING)
A Rationale for Structured Programming, 202

Top Down Versus Bottom Up Programming,
203

PROGRAMMING STYLE, I

INPUT PROCEDURE/OUTPUT
PROCEDURE Versus USING/
GIVING, 192

Summary, 192

Review Exercises, 192

Problems, 193

Projects, 194

196

Stepwise Refinement, 204

Pseudocode, 206

Control Breaks: A Completed Program, 206

Top Down Development, 206
Hierarchy Charts Top Down Testing Merging
Files: A Completed Program

Summary, 217

Review Exercises, 217

Problems, 217

Projects, 218

THE ROLE OF BAL IN DEEPER UNDERSTANDING 223
Chapter 12 NECESSARY BACKGROUND 225
Overview, 225 Base/Displacement Addressing, 233
Number Systems, 225 Instruction Formats, 234

Binary Decimal to Binary Binary Summary, 236
Addition Hexadecimal Decimal to Review Exercises. 236
glgxadecimal HleadecimaI Addition Problems, 237 ’
inary to Hexadecimal Conversion
Internal Data Representation, 229
Packed Numbers Binary Numbers Two's
Complement Notation The COBOL USAGE
Clause and Data Formats
Chapter 13 DEBUGGING, II 238

Overview, 238

The Memory Dump, 238

Dump Reading: Example 1 (Failure to
Initialize a Counter), 240

Dump Reading: Example 2 (Bad Input Data),
247

vi

The STATE and FLOW Options, 249
MYVS Implications, 250

Extension to DOS, 251

Summary, 251

Problems, 252

CONTENTS

Chapter 14 INSIGHT INTO THE COBOL COMPILER 255

Overview, 255 COBOL Add Instructions With Dissimilar
Conversion Instructions, 256 Data Types, 264
Instructions That Move Data, 257 Addition of Similar Data Types With an
Add Instructions, 258 Unsigned Operand, 265
COBOL From the Viewpoint of BAL, 259 Adding Operands That Are Not Aligned, 266
Data Division Map Literal Pool and Register Summary, 267
Assignment Procedure Division Map Review Exercises, 269
COBOL Add Instructions With Similar Data Problems, 269
Types, 261
Section V FILE PROCESSING 273
Chapter 15 MAGNETIC TAPE: CONCEPTS AND COBOL IMPLICATIONS 273
Overview, 273 File Maintenance, 281
Tape Characteristics and Capacity, 273 Backup, 283
Timing Considerations, 276 Case Study, 283
Identifying Files on Tape, 277 Summary, 287
COBOL Requirements, 277 Review Exercises, 289
Environment Division Data Problems, 289
Division Procedure Division Projects, 290

Record Formats, 281

Chapter 16 MAGNETIC DISK: CONCEPTS AND COBOL IMPLICATIONS ____ 293
Overview, 293 Additional COBOL Elements (VSAM and
Magnetic Disk: Physical Characteristics, 293 the ANS 74 Standard), 307

Capacity Timing File Organization Summary, 309
Sequential Processing, 298 Review Exercises, 309
Indexed Organization (IBM/ISAM Problems, 310

Implementation) Projects, 310

COBOL Implications Creation of an ISAM
File Random (Direct) Access of an ISAM
File ISAM/VSAM Coding Differences

Chapter 17 DOS JCL 311
Overview, 311 Processing Disk Files, 321
DOS Components, 311 DLBL Statement EXTENT Statement
A Basic Job Stream, 312 Sequential Processing, 323
JOB Statement OPTION Statement EXEC Nonsequential Processing, 324
Statement /* (Slash Asterisk) Statement Summary, 326
/& (Slash Ampersand) Statement Review Exercises, 327

Device Assignments, 315 Problems, 327

ASSGN Statement PAUSE Statement
Processing Tape Files, 318

LBLTYP Statement TLBL Statement

CONTENTS vii

APPENDIXES

Chapter 18 0S JCL

329

Overview, 329
Classification of OS Systems, 329
The Compile, Link, and Go Process, 330
Basic Job Stream, 330
System QOutput and the Procedure Concept
JOB Statement, 335
EXEC Statement, 335
DD Statement, 337
Additional DD Statements
Processing Tape Files, 338

DISP (DISPosition) Parameter UNIT
Parameter VOL (VOLume) Parameter
LABEL Parameter DSN(DSName or Data
Set Name) Parameter

Processing Files on Direct-Access Devices,
342
SPACE Parameter UNIT Parameter
Generation Data Groups DCB Parameter

Using the COBOL Sort

Subprograms

Summary

Review Exercises

Problems

355
Appendix A Report Writer 357
Overview, 357 Data Division Requirements, 358
Vocabulary, 357 Procedure Division Requirements, 363
An Example: A Double Control Break Summary, 364

Program, 358 Review Exercises, 365

Appendix B COBOL RESERVED WORDS 366
Appendix C IBM OS/VS COBOL REFERENCE FORMAT SUMMARY 370
Appendix D ASSEMBLER FORMATS 380
Index 383

viii

CONTENTS

Section 1

INTRODUCTION TO
DATA PROCESSING

OVERVIEW

Chapter 1

INTRODUCTION

This book is about computer programming. In particular it is about COBOL, a widely used commer-
cial programming language. Programming involves the translation of a precise means of problem
solution into a form the computer can understand. Programming is necessary because, despite
reports to the contrary, computers cannot think for themselves. Instead they do exactly what they
have been instructed to do, and these instructions take the form of a computer program. The
advantage of the computer stems from its speed and accuracy. It does not do anything that a
human being could not if he or she were given sufficient time.

All computer applications consist of three phases: input, processing, and output. Information
enters the computer, it is processed (i.e., calculations are performed), and the results are communi-
cated to the user. Input can come from punched cards, magnetic tape or disk, computer terminals,
or any of a variety of other devices. Processing encompasses the logic to solve a problem, but in
actuality all a computer does is add, subtract, multiply, divide, or compare. All logic stems from
these basic operations, and the power of the computer comes from its ability to alter a sequence
of operations based on the results of a comparison. Output can take several forms. It may consist
of the ubiquitous 11 X 1478 computer listing or printout, or it may be payroll checks, computer
letters, mailing labels, magnetic tape, punched cards, etc.

We shall begin our study of computer programming by describing punched card input and
printed output in some detail. We shall consider the structure of a computer and contrast machine-
and problem-oriented languages. We shall pose a simple problem and develop the logic and COBOL
program to solve it. The rapid entrance into COBOL is somewhat different from the approach
followed by most textbooks, but we believe in learning by doing. There is nothing very mysterious
about COBOL programming, so let’s get started.

PUNCHED CARD INPUT

The punched card (Figure 1.1) has been around a long time. Its development was motivated by
the U.S. Constitution (that is not a typographical error). Our Constitution requires that a federal
census be taken every ten years. As the country expanded, processing of census data consumed
increasing amounts of time (three years for the 1880 census), and the government needed a faster
way of tabulating data. Herman Hollerith introduced the 80-column card in the late 1880s, and
it has been with us ever since. (Mechanical devices, which were not computers, were available in

[t uwn|od ul paydund

SI g Jaquinu ay |

piel uwnion-0g 8yL 'L 34NOI4

0 mouJ ul yound e
aney ||e Z - S $19118| 8y |

1

b6666E66ED
8888888886
reeeeereet

9999

o
e
-
=
w

£G66G¢E

-

AR AN

EEECEEEC

o
o3

clticittte

[|
TR

psoooo0po000D

LS

-

o~

0c

BEG66CHECEGCEE
sSHRRRNNNNecses
CLLLLTLeieint

9999999959998

-
-
s
-
-
-
-
=)
e
-
n
-
-
-
-

ASERERST | | | ERARERRAR

veececcescec QEERCcCeee

trlQrirriirrreriiiLl

RN RN

SRER I IR IS I A LT

Vo Be

BcocooBoooRooogo00G00

111
it

o4

q

06666066686

=

i R REERERRERR RN

L

LRLLLLLLt

XN EEEKER!

-

Y Y
TEE1 [RX2]
RN P
RARNRY I

[AEEEEEY |

ENNT

[

99

L

9999

vevw

[

JGo00000fgo00000

; A
GE65CL66665

,-mmmwmaﬁm
IRRERES ERILEERED ERERRERE] ERERERR
AN ENY IRRESEY FENNUEENY IRANE
9999959999993 99993359999f35999
SRR RS IREREEES LER R RN LA
AAEEIARAR] CAARERAY IRRNREAEY ERE
cereecececpeecsccc e fee
IREARSRRERE Y IR IARRARRRA ¥

300

n

| MoJ ul yound e pue Z| mol
ul yound e yum 'y 1a13a| ay]

N

101B2IpU| UWN|0D

——6-1 smoy

P 101BJIpU| UuwWN|0)

0 moy
L1 moy

¢l moy
uollelaudiaiu| onageyd|y

INTRODUCTION TO DATA PROCESSING

SECTION 1

the nineteenth century to process these cards.) Another interesting sidelight is the size of the punched
card; it has the dimensions of the dollar bill of 1880.

The punched card has 80 vertical columns, each of which consists of 12 rows and contains a
single character. Each character has its own unique combination of row punches. The let.ter A,
for example, has a punch in row 12 and row 1 (see Figure 1.1). The letter B has a punch in row
12 and row 2. In Figure 1.1, A and B appear in columns 1 and 2, respectively. The upper three
rows of the card (rows 12, 11, and 0) are known as zones, and the other rows as digits. Every
letter has two punches: one zone and one digit. The letters A through I all have the same zone,
i.e., row 12. The letters J through R all have a punch in row 11 and S through Z in row 0. The
numbers O through 9 contain a single punch in the appropriate row. The bottom edge of the
card indicates the column. The column indicator, in conjunction with the alphabetic information
at the very top, indicates what is punched where; e.g., column 47 contains the number nine.

As a test of your understanding, what character is punched in column 26 of Figure 1.1?
(Answer: Z.) What punches are required for the letter X? (Answer: row 0 and row 7.) In what
column does X appear? (Answer: column 24.)

The computer is colorblind, and hence it does not matter if information is punched on red,
white, or blue cards. Some installations, however, require that the first or last card in a deck be a
specified color. This is to delineate one deck from another and is totally for human convenience.
The very top edge of the card in Figure 1.1 interprets the information on the card. Again this is
for human convenience only. The card reader senses the holes that are punched and does not
refer to the interpreted information. Indeed, the latter need not be present at all.

PRINTED OUTPUT

The most widely used medium for computer output is the 11 X 147 printout (alias listing, readout,
etc.). Just as a computer must be told which card columns contain incoming data, it must also
be told where to print its output. The 11 X 147 form typically contains 132 print positions per
line and 66 lines per page. Figure 1.2 contains a print layout form commonly used by programmers
to plan their output. As can be seen from Figure 1.2, “THIS IS A PRINT LAYOUT FORM” is
to appear on the tenth line from the top, beginning in column 15 and extending to column 41.

It makes no difference to the computer if printing is on wide or narrow paper, single- or
multiple-part forms, mailing labels, payroll checks, etc. The machine is only interested in knowing
what information is to appear and where. This is accomplished via instructions in a program.

STRUCTURE OF A COMPUTER

A computer can be thought of as a collection of electronic devices that (1) accept data, (2) perform
calculations, and (3) produce results. A functional representation is shown in Figure 1.3.

We have already spoken about input and output. Main storage, i.e., the computer’s memory,
stores instructions and data while they are being processed. The size of a computer is measured
by the capacity of its memory. Large modern machines have memory capacities of several million
characters.

The central processing unit (CPU) is the “brain” of the computer. It consists of an arithmetic
and logical unit (ALU) and a control unit. The ALU actually executes instructions; i.e., it adds,
subtracts, multiplies, divides, and compares. The control unit monitors the transfer of data between
main storage, input/output (I/0) devices, and the ALU. It decides which instruction will be executed
next and is the “boss” of the computer.

Speed of execution is another way in which computers are measured. The ALU of a modern
machine can execute millions of instructions per second. The time to execute a single instruction
is expressed in microseconds (millionths of a second) or nanoseconds (billionths of a second).

MACHINE VERSUS HIGHER-LEVEL LANGUAGES

Each computer has its own unique machine language tied to specific locations in its memory.
Human beings, however, think in terms of problems and use quantities with mnemonic significance,

CHAPTER |: INTRODUCTION S

