.

SYSTEMS MODELLING
AND OPTIMIZATION

of Electrical Engineers



& 8262622

SYSTEMS MODELLING
AND OPTIMIZATION

Edited by

Peter Nash

Control and Management Systems Division
University Enginering Department
Cambridge

AR

E8262622

PETER PEREGRINUS LTD
on behalf of the
Institution of Electrical Engineers



Published by: The Institution of Electrical Engineers, London
and New York
Peter Peregrinus Ltd., Stevenage, UK, and New York

© 1981: Peter Peregrinus Ltd.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted in any form or by any
means—electronic, mechanical, photocopying, recording or otherwise—
without the prior written permission of the publisher

British Library Cataloguing in Publication Data

Systems modelling and optimisation.
- (IEE control engineering series; 16)
1. Control theory
I. Nash, Peter Il. Series
629.8'312 QA402.3

ISBN 0-906048-63-X

Printed in England by A. Wheaton & Co., Ltd., Exeter



IEE CONTROL ENGINEERING SERIES 16

SERIES EDITORS: PROF. H. NICHOLSON
PROF. B.H. SWANICK

- SYSTEMS MODELLING
- AND OPTIMIZATION



Previous volumes in this series:
Volume 1 Multivariable control theory
J. M. Layton

Volume 2 Lift traffic analysis, design and control
G. C. Barney and S. M. dos Santos

Volume 3 Transducers in digital systems
G. A. Woolvet

Volume 4 Supervisory remote control systems
R. E. Young

Volume 5 Structure of interconnected systems
H. Nicholson

Volume 6 Power system control
M. J. H. Sterling

Volume 7 Feedback and multivariable systems
D. H. Owens

Volume 8 A history of control engineering, 1800—1930
S. Bennett

Volume 9 Modern approaches to control system design
N. Munro (Editor)

Volume 10 Control of time delay systems
J. E. Marshall

Volume 11 Biological systems, modelling and control
D. A. Linkens

Volume 12 Modelling of dynamical systems—1
H. Nicholson (Editor)

Volume 13 Modeling of dynamical systems—2
H. Nicholson (Editor)

Volume 14 Optimal relay and saturating control system synthesis
E. P. Ryan '

Volume 15 Self-tuning and adaptive control: theory and application
C. J. Harris and S. A. Billings (Editors)



List of contributors

P. Toint
Department of Mathematics, Facultes Universaires de Namur, Belgium

C. Storey
Department of Mathematics, University of Technology, Loughborough

G.W.T. White
Topexpress Ltd., Cambridge

L.H. Campbell
Durham University Business School

D. Foster
ICI Ltd., Wilton, Middlesborough

M.B. Zarrop
Control Systems Centre, UMIST, Manchester

P. Nash
Control & Management Systems Division, University Engineering Department,
Cambridge

R. A. Blewitt
National Coal Board, Doncaster

G. Walsham
Control & Management Systems Division, University Engineering Department,
Cambridge

J.M. Macieowski
Department of Engineering, Warwick University, Warwick



Preface

This book is drawn from material presented at a vacation school
for research students in control engineering, held in Cambridge
in July, 1980, under the sponsorship of the (then) Control
Engineering Committee of the Science Research Council. The
school is one of a programme of five, soon to be six, vacation
schools, whose aim is to broaden the training of control
engineering research students. This particular school aims to
explore some of the areas where control engineering and
operational research overlap.

That this overlap is extensive can readily be seen, just by
skimming through the many journals devoted, under one name or
another, to "systems modelling". 1Indeed, it seems to me that
there are a very large number of problems and theoretical areas
which defy categorization as specifically operational research
or management science or control engineering: the monitoring
and control of environmental pollution, the efficient
utilization of scarce natural resources, planning and control
of large systems, control of integrated manufacturing
operations are all obvious examples. Moreover, the common
ground in these two disciplines must surely grow, as using the
ever greater power of ever smaller computers becomes an
essential feature of both. '

A complete survey of the common ground of control engineering
and operational research is obviously impossible in either a
one-week school or in book of the length of this one. The
vacation school was designed to concentrate largely on problems
to which optimization techniques could sensibly be applied, and
this book is about such problems and related thoeretical areas
almost exclusively. Chapters 1 and 2 are surveys, of static
optimization (mathematical programming) and dynamic
optimization respectively. Chapter 1 in particular examines
the problems of efficiently solving a mathematical optimization
problem, once posed, and includes extensive references to
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up-to-date research in the field of mathematical programming
algorithms. Some of these methods re-appear in chapter 2, where
the use of function-space analogues of finite-dimensional
programming algorithms is one of the methods discussed for
solving problems in optimal control.

Chapter 3 surveys the theory of optimization wunder
constraints as it applies to large-scale, and particularly
decentralized or hierarchical, systems. The theoretical
advantages of different methods of coordination in such systems
are discussed, and it is shown how the theory provides a useful
insight into the operation of systems subject to control at
different levels. A particular type of problem decomposition,
that of Dantzig and Wolfe for linear programs, is discussed in
more detail in chapter 5.

Linear programming itself is almost certainly the most widely

used and successful optimization technique. Chapter 4 is
devoted to an introduction to the subject, and includes, with
simple examples, an explanation of how the central technique
of linear programming - the simplex method - works. Unusually
in an introductory treatment, this chapter includes a brief
discussion of the operational considerations involved in
implementing a linear programming solution.
Chapters 6,8 and 9 provide specific case studies of problems
of management and control approached by optimization
techniques. Chapter 6 is concerned with the optimal operation
of parts of a petrochemical plant; chapter eight is concerned
with the optimal operation of reservoirs on the U. K. canal
system; Chapter 9 is about the use of linear programming in a
model used for optimizing the marketing strategy of an area of
the National Coal Board. Chapter 7 is also case study material,
but of a more general nature, and examines the problems of
applying the techniques of control theory, and in particular
optimal control, to models of the economy.

As well as illustrating the application of theory discussed
in the first five chapters, this case study matéxial is intended
to shed light on the problems of modelling systems in the ways
implied by approaches involving optimization. Indeed, it is
evident in some of the studies that the most important part of
the modelling effort comes in setting up the model. Once this
is done, solution can be relatively simple, and it is perhaps
worth saying that, while the development of efficient general
algorithms is clearly necessary and important, a surprisingly
large number of optimization problems that arise in practice
are solved in an ad hoc way. Indeed, it seems sensible always
to look carefully at any optimization problem in case the
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solution to it, or something close to it, can be found by a
combination of mathematical technique, and insight born of
knowledge of the system being modelled.

At the other end of the scale from these considerations, it
is to be remembered that considerable help can be given with
the solution of what may present itself as a problem in
optimization without attempting any formal optimization at all.
Just to be able to construct a model which can elucidate the
consequences of different options may be sufficient to enable
a satisfactory course of action to be chosen. This is to some
extent the point made by chapter 10, which describes some
continuing work on the modelling of the growth of
telecommunications systems in less developed countries. This
chapter also illustrates the very first steps of building a model
to help people to make decisions, when there is no clear
framework yet established and the goals of planning are known
at best vaguely.

All of the models discussed in the case studies have in common
the feature that their essential output is recommendations for
action, whether by a computer controlling a plant or an engineer
controlling a reservoir system or a treasury minister concerned
with the country's economy. If these recommendations atre put
into effect, there is a clear implication that the people who
decide that they should be implemented 'believe' in the models.
It is interesting to ask where that belief comes from, and
whether there are any criteria by which a model can be measured
to see whether it is credible. These are the questions addressed
by the final chapter. Here the 'optimizing model' is analysed
into the three components of behavioural, cost and solution
sub-models, and methods for evaluating these - in particular
the first two - discussed.

Editing this book has been both interesting and rewarding,
and has been made much easier by the help of a number of people.
I should like to express my thanks to all the contributors, as
well as to the students who made the original vacation school
so interesting. I have had help, advice and patience from Tim
Hills of Peter Peregrinus, and considerable encouragement from
Josie Spring of the Science and Engineering Research Council.
I am very grateful to Dr. G.W.T. White, who in addition to making
a contribution in the form of a chapter, spent a considerable
amount of time modifying the software that was used in producing
the book.

Peter Nash
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Chapter 1
Mathematical programming

P. Toint

1.1 INTRODUCTION

A mathematical programming problem is usually of the
following type. Associated with some situation under study,
there exists a real valued function that measures the
performance or quality of the system that is considered, and
it is desired to modify the system so that this performance index
or objective function is as small as possible. Usually it is
not possible to modify a part of the system arbitrarily without
regard to the others: there are constraints that 1link the
different components of the system. The only allowable
modifications are those which satisfy these constraints. One
wishes to find a state of the system that gives to the objective
function the least possible value, while satisfying the
constraints.

This can be mathematically expressed in the following way.
Assume that the state of the system under consideration can be
adequately described by a vector of n real numbers, x say. Let
the objective function be f (x) and suppose that the constraints
are expressed by some equations and bounds involving the
components of x. Then the problem can be formally stated as

Pl: minimize f(x)
subject to e;(x)=0 , ieIg (l.1la)
hl(X) >0 ’ ].EIl (1.1b)
x eRD

where the (1.la) and (1.1b) represent equations and inequalities
that describe the constraints , and where Ig and I; are sets
of indices of the constrained functions.
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It is clear that Pl is fairly general, and that further
assumptions will be needed in order to obtain practically
solvable problems. These assumptions will generate several
overlapping classes of optimization problems, depending, for
example, on the mathematical description of the objective
function, and on the effective presence of constraints on the
x variable. At the same time, the formulation of Pl does not
include a number of practically important problems. For
example, problems where the performance of a system has to be
measured by more than one criterion cannot be readily put into
this framework.

The generality of problem Pl has led to mathematical
programming becoming a very wide area of research, and the
variety of specific problems that are addressed as well as the
variety of the proposed solutions make a complete discussion
impossible. Consequently, we will restrict ourselves in this
chapter to an exploratory survey, with the main emphasis on
algorithms and without much in the way of proofs. We begin with
some general theoretical background.

1.2 THEORETICAL BACKGROUND

Consider again the general problem Pl, where we now assume
that all the functions involved are everywhere ‘twice
continuously differentiable. The following paragraphs will
deal with conditions on the derivatives of these functions which
are necessary or sufficient for a vector x* to be a solution.
First, let us define what we mean by a solution.

Definition: The vector x¢IRP is feasible for Pl if x satisfies
(1.1a) and (l.1b). The vector x*eIR" is a local solution of Pl
if x* is feasible and there exists a neighbourhood of x* such
that for all feasible x in this neighbourhood, f(x) »f(x*).

We choose to follow in this section the structure that is
presented in the book by Fiacco and McCormick [13]. 1In order
to proceed, we need another definition: that of the Lagrangian
function associated with P1l, namely

L(x,u,v) = f(x)-uTe (x)-wTh (x). (1.2)

Here e(x) and h(x) are vector-valued functions whose components
are {ei(x):iEIe} and {h; (x):i€I,} respectively. In expression
(1.2), the vectors u and w are called Lagrange multipliers or
Lagrange parameters associated with problem Pl. We shall
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discover that the Lagrangian function and its derivatives are
of paramount importance in deriving optimality conditions.
We now state, without proof, a classical result, due to Farkas
[11].
Lemma 1.1
Let {aK: k=0,1,...,9) be a set of vectors in R". If
zTa0>0
for every z€R" such that

zTak30 , (k=1,...,9) (1.3)

then there exist non-negative coefficients {ak: k=1,2,...,9}
such that

«; al (1.4)

Fig 1.1 Farkas' Lemma.

This result is illustrated by the two-dimensional example in
Fig 1.1. The sets of vectors satisfying (1.3) for k=1,2 are
respectively Py and P,. Hence the set of vectors satisfying
both inequalities is P. It is easy to verify that the set of
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vectors that have non-negative projections on any vector of P
is C, and hence that any such vector is a non-negative linear

combination of aj; and aj.

Consider a feasible point x* for Pl and define the following

sets

I;={i: ieI h-(x*)=0} (active set) i
o

ir

2} ={z: zTvh;(x") >0 for ieIj,

zTVei(x*)——-O for iEIe, zTVfi(x*) >0},

Z2={z: zTVhi(x*) >0 for iEI;,

zTve; (x*) =0 for ieIl,, zTvf;(x*)<0},

23={z: zeR", z¢z], z¢23)}

(1.6)

(1.7)

(1.8)

(1.9)

The point of these definitions is that ZI (ZE) is the set of
perturbations of x* which, to first order, maintain feasibility
with respect to equality and saturated inequality constraints
and produce an increase (decrease) in objective function value.

Zg is the set of infeasible perturbations.

h{x>=0 h(x )=h(x*¥ >0
Vel(x*)

Fig 1.2 The sets 2], 23, Z3.



