TM HEDITION

SECOND EDITION

‘Digital Computer
System Principles

Herbert Hellerman

- School of Advanced Technology
State University of New York at Binghamton

NV
| IvA4

TATA McGRAW-HILL PUBLISHING COMPANY LTD.
New Delhi

Digital Computer System Principles
Copyright @ 1967, 1973 by McGraw-Hill, Inc.

All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system
or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written

permission- of the publishers.

T M H Edition 1974

Reprinted in India by arrangement with McGraw-Hill, Inc.
: New York.

This edition can be exported from India only by the Publishers,
Tata McGraw-Hill Publishing Company Ltd.

Published by Tata McGraw-Hill Publishing Company Limited and
Printed by Mohan Makhijani at Rekha Printers Private Limited, New Delhi-110015-

@

: e
l_hm w","," %
+ [Pius " 243.2 &+ 5.2

- {Minus 2-3.2 & 71,2
x [Times 2%3.2 « 6.4
Divide 243,2 « 0,625

- (850)-(8<0)

2
B

Maximum 37 «» 7
- Floor L [Minimum 317 « 3
WD e (2718200008 Exponentisl [u[Power 203 v 8

Ol > N > ol Natural O Logarithm A8 «» log B base A
A logarithm ‘408 «> (@8)+ed
173,14 ++ 3,14 Magnitude || | Rosidue
As0,B<0| DOMAIN ERROR
10+ 1 . Factorial !{Binomial A1B «» (!1B)4(14)x1B-A
1B «» Bx!B-1 coofficient 215 «» 10 3!5 «» 10
or !5 «> gamma (B+1) ; "
7B« random choico Roll 7| Deal A mixed function
from 13 (see Fig. 2.18.2)
OB ++ Bx3,14159,,, Pl times of Circulss See table at left
~l 0 ~0 e NOT ~
A|AND A| B |anB| AvB | AnB | 4vB
‘ viOoR ofo|lo | o 1] 1
Tablc of dyedic o functions ~ NAND of1] 0 1 1 0
(-4)0B | A AoB » | NOR 1l oo 1 1 0
(1-B%2)%.5| 0| (1-B#2)n,s 1] 1 1 0 0
puswid B e O PSR
1CCO8 osine .
: Ricwu |5 Tenggat B H Notmm“ Result is 1 if the
(T14B02)0.5 [4| (1+Ba2)w.s = | Equal - Helition hiolds, 0
Arcsinh B | § Sinh B 2] Not less if it does not:
Arccosh B | 6 Cosh B > | Greater 357 = 1
Arctanh B | 7 Tanh B8 : = | Not Equal 753 «» 0

Fig. 26.1. Primitive scalar functions (operatars).

 To my wife Elaine

Preface

The rapid progress in the design and application of general-purpose digital
computers has tended to outdistance systematic treatment of the field as a
whole. A major step in this treatment is to recognize information processing as a
subject in its own right and not as just a tool for other disciplines. This
recognition is justified by the large and growing body of techniques and
knowledge derived from the many designs and widespread use of computer
systems, as well as the influence of such systems on our way of thinking about
problems.

This second edition is an extensively revised version of the first edition, but it
has the same basic purpose: to give a college-level treatment of the important
principles of digital computer systems. The viewpoint is primarily tutorial rather
than encyclopedic in that it is intended to impart skills and to encourage a
critical and analytic spirit. Much attention is given to those ideas that are
common to many aspects of computer systems so that the reader may not only
learn specific practices, but also learn how to learn about them to develop the
awareness and confidence needed to tackle new problems. To help accomplish this,
categories of structure, alternative considerations, and summary information are
highlighted in charts which constitute many of the figures. Also, no opportunity
is lost to repeat unifying techniques and ideas (like space-time trade-offs and the
finite-state-machine model) in several different contexts.

Major changes from the first edition include: use of the APL language rather
than its predecessor, the Iverson language; more emphasis on statistics and string
processing in programming examples; expanded treatment of program trans-
lation; extensive revision of the chapter on finite-state and Turing machine

e o v e o

xii Preface

models; statements on the principles and rationale of microprogramming; and
inclusion of architectural features of the IBM system/370 as well as some detail
of the buffer store organization of the Model 155.

The reader is assumed to be comfortable with mathematics through college
algebra. In a few cases, higher mathematics is used, but these are infrequent and
may be skipped without losing continuity. Although the text is self-contained
and hence suitable to novices, it is likely to be best appreciated by those who are
not encountering the subject of programming for the very first time. Those with
some computer experience may also welcome a systematic coverage of material
they may have acquired only piecemeal.

A key notion in all of computer science is the sequential process. Examples
include methods of solving linear equations, evaluating formulas, or determining
the internal switching operations to implement a single computer instruction.
Programming in this broad sense is a major theme of this book. Topics in
logical design, machine description, numerical analysis, and program translation
are discussed from this viewpoint.

Chapter 1 gives a brief historical perspective and an informal overview of
important ideas of machine organization and programming.

Chapter 2 introduces the APL programming language used throughout the
book. Most of the examples and exercises in this chapter are taken from
elementary numerical mathematics, statistics, and string processiﬁg.

Chapter 3 discusses several topics of language description and translation,
including techniques used in compilers and interpreters.

Chapter 4 is an introductory treatment of storage organization, including
descriptions of selected devices and algorithms for list maintenance, sorting, and
searching. .

Chapters 5, 6, and 7 are hardware-oriented and treat combinational circuits,
bussing and magnetic-core storage, and sequential circuits, respectively.

Chapter 8 is concerned with the detailed representation and manipulation of
information and includes arithmetic operations and coding schemes.

Chapter 9 is concerned with the architecture of computer equipment, i.e., the
alternatiaves available to designers in selecting addressing, instruction sequenc-
ing, input/output control, and privileged-mode features. It also includes a
detailed discussion of the rationale and technique of microprogramming and a
simple machine example. :

Chapter 10 is a description of the architecture of the IBM system /360 and
system/370. Although the emphasis is on the appearance of the system to its
machine-language users, some implementation topics are also included, especially
the buffer-storage organization of the Model 155.

Chapter 11 is an introduction to reliability theory and some of its elementary
applications to computer systems.

As indicated earlier, programming forms a major theme of the book. The APL
language was selected to meet the need of a single comprehensive method of

Preface xiii

describing sequential processes as programs. It was chosen because its extensive
set of operators and its ability to directly specify operations on arrays permit
concise descriptions without requiring unessential detail. Algorithms for internal
machine operations, programming systems, and problem solutions are presented
as programs or statements in a single notation. Most programs are augmented by
word descriptions (sometimes line-by-line). Since the first edition of this book,
which used the Iverson language (an early form of APL), machine implementa-
tions of APL have become available on several computers. For those readers with
access to such a system, the programs in the text may be entered and run from
timesharing terminals. If an APL system is not available, the programs may still
be used as a powerful means of description and may also be transcribed to other
machine-executable languages. For convenience in reference and to encourage
self-study, most of the APL operators (including examples of use) are
summarized in a few charts.

To highlight general applicability of results and techniques, topics are often
treated abstractly, but are illustrated with concrete examples. These are taken
from several systems, especially IBM systems. This is due in part to my own
experience but also to the fact that most of the world’s computers are
manufactured by IBM. Of course many features of IBM systems originated in
equipment of other manufacturers or in research groups and also appear
elsewhere.

Like the first edition, this book is intended for colleges and college-level
courses in industry as well as for self-study. A one-semester introductory course
at the senior-first-year graduate level in electrical engineering. may use most of
Chapters 1, 2, 5, 6, 7, and 8. A course in programming, using APL as the major
language, can use Chapters 1, 2, 3, 4, etc.,to introduce a-simple Assembler
language using part of Chapter 9. A two-semester course in introductory
computer science or computer engineering could use the book in cover-to-cover
fashion.

I am indebted to Mr. John McPherson and Dr. Frank Beckman of the IBM
Systems Research Institute for the encouragement that led to the first edition.
Others who contributed with valuable criticisms include Mr. C. L. Gold, Mr.
John McKeehan, Miss Barbara White, and Dr. G. M. Weinberg. My indebtedness
to Dr. K. E. Iverson, the principal architect of the APL language, is indicated by
the use of the language throughout the text. The diligent work of Mr. Gary
Rogers of the State University of New York, Binghamton, in checking out
several of the APL programs and reading proof was muost valuable. Finally,
thanks are due to Mrs. Shanna McGoff for her help in typing the manuscript.

Herbert Hellerman

Contents

Preface

1 Automatic Computer Systems

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Historical Perspective

A Qlassification of Automatic Computers
The Nature of a Computer System
Principles of Hardware Organization
Conventions on Use of Storage

Elements of Programming

Some Facts of Computer Technology
Principles of the Space-Time Relationship

2 Programming

2.1
2.2
2.3
24
2:5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

APL: The Programming Language Used in This Book
Alphabet (Character Set), Operands, and Variables

A Simple Program

Expressions: Right-to-left Rule

Base Value and Representation (Inverse Base Value)
Primitive Scalar Operators, Element-by-element Rule
Branching, Looping, and Tracing

Principles of Looping Summarized

Arrays and Indexing: Ravel and Reshape

Data Generator Operators

Reductjon Operations: Inner and Outer Product
Generation of Similarity Matrix

Solution of Linear Equations and Matrix Inversion
Functions

Function Naming: Global and Local Variables -
Formula Evaluation: One Function of Many. Variables

Xi

~ WK =

viii Contents. '

2.17 Recursive Definition of Functions

2.18 Selection, Search, and Ordering Operations
2.19 Some Statistics Applications

2.20 Some Nonnumerical Applications

¥

3 Program Translation

3.1 Interpreters

3.2 Compilers

3.3 Assembler Programs

3.4 Principles of Subroutines

3.5 Macros

3.6 Subroutine Communication: Parameter Translation
3.7 Reentrant Subroutines

3.8 Translation of Algebraic Expressions

3.9 Syntax Description: BNF Equations

3.10 Syntax-directed Compiling: Compiler of Compilers
3.11 Translating Indexes into Addresses

3.12 Efficiency Considerations in Programming Systems
3.13 Concluding Remarks

4 Storage Organization and Searching

4.1 Basic Storage Operations; Direct, Sequential, and Associative Access
4.2 A Brief Description of Some- Storage Devices

4.3 Methods of Controlling Transmission

4.4 Cycle Stealing and 1/0-Compute Overlap

4.5 A Simple Model for 1/0-Compute Overlap

4.6 ‘Statement of a Search Problem

4.7 Bit Maps versus Index Vectors

4.8 List Maintenance Using a Single Storage Pool

4.9 Some Factors in File Organization

4.10 Searching and Ordering Files: General Discussion

4.11 Updating Ordered Files

4.12 Principles of Ordering (Sorting)

4.13 Binary Search (Ordered Files, Direct-access Divices)

4.14 Search of an Unordered File

4.15 Search of Unordered Files Stored on Direct-access (Random-access) Devices
4.16 Transformation-synonym Problem

4.17 Chaining on Secondary Keys

4.18 Searching C.rect-access Devices: Index Lists and Directories

4.19 Brief Summary of File-maintenance Processes

5 Logic and Logic Circuits

5.1 The Truth Table as a Logic-circuit Specification
5.2 Canonical Forms and Boolean Algebra

5.3 Logic-block Circuits

5.4 Circuit Minimization or Simplification

5.5 Karnaugh Map Technique of Simplification

5.6 Quine-McCluskey Simplification Algorithm

67
69

71

123

124
126
130
132
134
142
144
145
150
152
153
156
162
164
164
165
169
171
171

179

182
183
189
194
195
198

5.7 Design of a 1-bit Full Adder

5.8 Functions of n Variables

5.9 Not-And (NAND or Sheffer Stroke) Logic
5.10 Decomposition Using Two-input Blocks
5.11 Binary Decoders

5.12 Design of a Decimal (BCD) Decoder

5.13 Binary Encoders

Data-flow Circuits and Magnetic-core Storage

6.1 Interconnection Configurations

6.2 Bus Priority Control for Noncritical Sources

6.3 Data Flow of a Simple Processor

6.4 Examples of Bus Circuits in the IBM 7090 Computer
6.5 Effect of Data Flow on Internal Speed

6.6 Magnetic-core Storage

6.7 Overlap and Cycle Splitting

6.8 Multiple-module Core Storage

6.9 Control-system Model for Critically Timed Sources
6.10 Elementary Guaranteed Service Procedure

Turing, Finite-state, and Sequential-circuit Models

7.1 Turing Machine Model

7.2 Finite-state-machine Model

7.3 Connectivity and Reachability

7.4 Periodic Behavior of Finite-state Machines

7.5 State Equivalence

7.6 State Minimization

7.7 Homing and Diagnosis Experiments

7.8 Sequential-circuit Applications of FSM Models
7.9 Flip-flops and Registers

7.10 Counters

7.11 Electronic Stepping Switch: Ring Counter
7.12 Conversion between Analog and Digital Representations
7.13 Cathode-ray Display Systems

Number Representations and Arithmetic Operations

8.1 Positional Number Systems

8.2 Conversion from One Radix Representation to Another
8.3 Binary-Decimal Conversions -

8.4 Subtraction of Positive Integers with Complement Arithmetic
8.5 Sign Control for Addition and Subtraction

8.6 Serial and Parallel Representations of Numbers

8.7 Serial Complementer Circuits

8.8 Serial Binary Addition

8.9 Design of Parallel Binary Adders

8.10 Serial-by-byte Addition

8.11 Decimal Addition in a Binary Adder

8.12 Binary Multiplication

8.13 Speeding Up Parallel Multiplication

8.14 Division Principles

Contents

ix

201
203
206
208
210
217
218

223

224
226
229
231
233
234
241
244
246
246

253

254
259
264
267
268
268
270"
271
273
279
284
285
288

293

294
297
301
304
310
312
313
315
316
321
321
324
326
329

X Contents

8.15 Floating-point Number Representation 334
8.16 Encoding 339
8.17 Encoding for Compaction 342
8.18 Error Detection 344
8.19 Single-error Correction over a Set of Binary Numbers 346
8.20 Single-error Correction of Each Code Point: Hamming Code 346
9 Computer Architecture and Microprogramming . 353
9.1 [Initial Program Load and Instruction Sequencing 354
9.2 Choice of Radix and Length of Information Units 358
9.3 Some Fundamental Objectives in Address-system Design 362
9.4 Addressing Modes (Immediate, Direct, Indirect) 363
9.5 Address Modification: Indexing 366
9.6 Binding Time and Relocatability 367
9.7 Features of an Addressing System 368
9.8 Push-down Storage, or Stack 372
9.9 Operating Systems: Essential Hardware Requirements 374
9.10 Storage Protection and Privileged Mode 377
9.11 Program Interrupt : ' 379
9.12 Input/Output Control : 383
9.13- Microprogramming: Purposes and Principles 385
9.14 Microprogramming: An Example Configuration 387
9.15 A Simple Machine 392
9.16 Summary 398
10 The IBM System/360 and System/370 403
10.1 Data Representations 405
4 10.2 Registers and Addressing 408
? 10.3 Instruction Formats : 412
10.4 Branch-type Instructions 414
10.5 Other Interesting Instructions 418
10.6 Interrupt Principles 418
i 10.7 Channels and Channel Logic 424
' 10.8 System/360 Implementation Summary ; 432
E 10.9 The IBM System/370: Mod 155 Buffer Storage Organization 434
11 Some Principles of Reliability Theory ' 443
11.1 Definitions and Series-Parallel Configurations 445
11.2 More General Reliability Structures 447
"11.3 Component versus System Redundancy 448
11.4 Time-dependent Reliability 449
11.5 Concluding Remarks 451
Appendix
A Mathematical Constants in Radices 10, 8, and 16; Powers of 2 455
B Summary of Some Results in Combinatorial Analysis and Probability 457

463

Automatic Computer Systems

The modern general-purpose digital computer system, which is the subject of
this book, is the most versatile and complex creation of mankind. Its versatility
follows from its applicability to a very wide range of problems, limited only by
human ability to give definite directions for solving a problem. A program gives
such directions in the form of a precise, highly stylized sequence of statements
detailing a problem-solution procedure. A computer system’s job is to reliably
and rapidly execute programs. Present speeds are indicated by the rates of arithme-
tic operations such as addition, subtraction, and comparison, which lie in the range
of about 100,000 to 10,000,000 instructions per second, depending on the size and
cost of the machine. In only a few hours, a modern large computer can do more
information processing than was done by all of mankind before the electronic age,
which began about 1950! It is no wonder that this tremendous amplification of
human information-processing capability is precipitating a new revolution.

To most people, the words “computer” and *‘computer system” are probably
synonymous and refer to the physical equipment, such as the Central Processing
Unit, console, tapes, disks, card reader, and printers visible to anyone visiting a
computer room. Although these devices are essential, they make up only the
visible “tip of the iceberg.” As soon as we start to use a modern computer
system, we are confronted not by the machine directly but by sets of rules calléd
programming languages in which we must express whatever it is we want to do.
The central importance of programming language is indicated by the fact that
even the physical computer may be understood as a hardware interpreter of one
particular language called the machine language. Machine languages are designed

2 Digital Computer. Systefn Principles

for machine efficiency, which is somewhat dichotomous with human con-
venience. Most users are shielded from the inconveniences of the machine by one
or more languages designed for good man-machine ,communication. The
versatility of the computer is illustrated by the fact that it can execute translator
programs (called generically compilers or interpreters) to transform programs
from user-oriented languages into machine-language form.

It should be clear from the discussion thus far that a computer system consists
of a computer machine, which is a collection of physical equipment, and also
programs, including those that translate user programs from any of several
languages into machine language. Most of this book is devoted to examining in
some detail theories and practices in the two great themes of computer systems:
equipment (hardware) and programming (software). It is appropriate to begin, in
the next section, by establishing a historical perspective.

1.1 HISTORICAL PERSPECTIVE

Mechanical aids to counting and calculating were known in antiquity. One of
many ancient devices, the abacus, survives today as a simple practical tool in
many parts of the world, especially the East, for business and even scientific
calculations. (A form of the abacus was probably used by the ancient Egyptians,
and it was known in China as early as the sixth century B.C.) In the hands of a
skilled operator, the abacus can be a powerful adjunct to hand calculations.
There are several forms of abacus; they all depend upon a positional notation for
representing numbers and an arrangement of movable beads, or similar simple
objects, to represent each digit. By moving beads, numbers are entered, added,
and subtracted to produce an updated result. Multiplication and division are
done by sequences of additions and subtractions.

Although the need to mechanize the arithmetic operations received most of
the attention in early devices, storage of intermediate results was at least as
important. Most devices, like the abacus, stored only the simple current result.
Other storage was usually of the same type as used for any written material, e.g.,
clay tablets and later paper. As long as the speed of operations was modest and
the use of storage also slow, there was little impetus to seek mechanization of
the control of sequences of operations. Yet forerunners of such control did
appear in somewhat different contexts, e.g., the Jacquard loom exhibited in
1801 used perforated (punched) cards to control patterns for weaving.
~ Charles Babbage (1792-1871) was probably the first to conceive of the essence .

of the general-purpose computer. Although he was very versatile, accomplished
both as a mathematician and as an engineer, his lifework was his computing
machines. It is worth noting that Babbage was first stimulated in this direction
because of the unreliability of manual computation, not by its slow speed. In

Automatic Computer Systems 3

particular, he found several errors in certain astronomy tables. In determining
the causes, he became convinced that error-free tables could be produced only
by a machine that would accept a description of the computation by a human
being but, once set up, would compute the tables and print them—all without
human intervention. Babbage’s culminating idea, which he proposed in great
detail, was his Analytic Engine, which would have been the first general-purpose
computer. It was not completed because he was unable to obtain sufficient
financial support. v

As Western industrial civilization developed, the need for mechanized
computation grew. As the 1890 census approached in the United States, it
became clear that if new processes were not developed, the reduction of the data
from one census would not be complete before it was time for the next one. Dr.
Herman Hollerith applied punched cards and simple machines for processing
them in the 1890 census. Thereafter, punched-card machines gained wide
acceptance in business and government.

The first third of the twentieth century saw the gradual development and use
of many calculating devices. A highly significant contribution was made by the
mathematician Alan Turing in 1937, when he published a clear and profound
theory of the nature of a general-purpose computing scheme. His results were
expressed in terms of a hypothetical “machine” of remarkable simplicity, which
he indicated had all the necessary attributes of a general-purpose computer.
Although Turing’s machine was only a theoretical construct and was never
seriously considered as economically feasible (it would be intolerably slow), it
drew the attention of several talented people to the feasibility of a general-
purpose computer. ' :

World War II gave great stimulus to improvement and invention of computing
devices and the technologies necessary to them. Howard Aiken and an IBM team
completed the Harvard Mark I electric computer (using relay logic) in 1944.J.P.
Eckert and J. W. Mauchly developed ENIAC, an electronic computer using
vacuum tubes in 1946. Both these machines were developed with scientific
calculations in mind. The first generation of computer technology began to be
mass-produced with the appearance of the UNIVAC I in 1951. The term “first
generation” is associated with the use of vacuum tubes as the major component
of logical circuitry, but it included a large variety of memory devices such as
mercury delay lines, storage tubes, drums, and magnetic cores, to name a few.

The second generation of hardware featured the transistor (invented in 1948)
in place of the vacuum tube. The solid-state transistor is far more efficient than
the vacuum tube partly because it requires no energy for heating a source of
electrons. Just as important, the transistor, unlike the vacuum tube, has almost
unlimited life and reliability and can be manufactured at much lower cost.
Second-generation equipment, which appeared about 1960, saw the widespread
installation and use of general-purpose computers. The third and fourth

4 Digital Computer System Principles

generations of computer technology (about 1964 and 1970) mark the increasing
use of integrated fabrication techniques, moving to the goal of manufacturing
most of a computer in one automatic continuous process without manual
intervention. Although this goal is not quite met even by existing fourth-
generation technology, costs are sharply down, reliability has increased, and
miniaturization improved. Miniaturization is essential for high speed because
electric signals must travel from point to point within the computer..Since the
maximum propagation speed is limited to the speed of light, minimum delays
require the shortest possible path lengths, obtainable by fabricating circuit
components and their interconnections as small as possible.

Hardware developments were roughly paralleled by progress in programming,
which is, however, more difficult to document. An early important develop-
ment, usually credited to Grace Hopper, is the symbolic machine language which
relieves the programmer from many exceedingly tedious and error-prone tasks.
Another milestone was FORTRAN (about 1955), the first widely used high-level
language, which included many elements of algebraic notation, like indexed
variables and mathematical expressions of arbitrary extent. Since FORTRAN
was developed by IBM, whose machines were most numerous, FORTRAN
quickly became pervasive and, after several versions, remains today a very widely
used language.

Other languages were invented to satisfy the needs of different classes of
computer use. Among the most important are COBOL, for business-oriented
data processing; ALGOL, probably the most widely accepted language in the
international community, particularly among mathematicians and scientists; and
PL/I developed by IBM and introduced in 1965 as a single language capable of
satisfying the needs of scientific, commercial, and system programming. Finally,
in this brief and incomplete listing we must mention APL, the language
developed chiefly by K. E. Iverson, which is used throughout this book. APL is
in many ways the most sophisticated of existing languages and first became
.widely available in 1966. »

Along with the introduction and improvements of computer languages, there
was a corresponding development of programming technology, i.e., the methods
of producing the compiler and interpreter translators and other aids for the
programmer. A very significant idea that has undergone intensive development is
the operating system, which is a collection of programs responsible for
monitoring and allocating all systems resources in response to user requests in a
way that reflects certain efficiency objectives. By 1966 or so, almost all medium
to large computers ran under an operating system. Jobs were typically submitted
by users as decks of punched cards, either to the computer room or by
remote-job-entry (RJE) terminals, i.e., card reader and printer equipment
connected by telephone lines to the computer. In either case, once a job was
received by the computer, the operating system made almost all the scheduling

Automatic Computer Systems 5

decisions. A large computer could run several hundred or even thousands of jobs
per 24-hour day with only one or two professional operators in the machine
room.

The 1960s saw a great intensification of the symbiosis of the computer and the
telephone system (teleprocessing). Much of this was RJE and routine non-
general-purpose use, such as airline reservation systems. Considerable success was
also achieved in bringing the generality and excitement of a general-purpose
computer system to individual people through the use of timesharing systems.
Here, an appropriate operating-system program interleaves the requests of several
human users who may be remotely located and ‘communicating over telephone
lines using such devices as a teletype or typewriter terminal. Because of high
computer speed relative to- human “think” time, a single system could
comfortably service 50 to 100 (or more) users, with each having the “feel” of his
own private computer. The timesharing system, by bringing people closest to the
computer, seems to have very great potential, as yet largely unexplored, for
amplifying human creativity.

1.2 A CLASSIFICATION OF AUTOMATIC COMPUTERS

Automatic computers may be broadly classified as analog or digital (Fig. 1.2.1).
Analog computers make use of the analogy between the values assumed by some
physical quantity, such as shaft rotation, distance, or electric voltage, and a
variable in the problem of interest. Digital computers in principle manipulate
numbers directly. In a sense all computers have an analog quality since a physical
representation must be used for the abstraction that is a number. In the digital
computer, the analogy is minimal, while the analog computer exploits it to a
very great extent. .

Both analog and digital computers include a subclass of rather simple machines
that mechanize only specific simple operations. For example, the slide rule is an
analog computer that represents numbers as distances on a logarithmic scale.
Multiplication, division, finding roots of numbers, and other operations are done
by adding and subtracting lengths. Examples of operatioﬁ-only machines of the
digital type include adding machines and desk calculators.

A second class, more sophisticated than operation-only machines, may be
termed problem-setup machines. In addition to performing arithmetic operations
they can accept a description of a procedure to link operations in sequence to solve
a problem. The specification of the procedure may be built into the machine’s
controls, as in certain special-puspose machines, or a plugboard arrangemént may
be supplied for specifying the desired sequence of operations. The main idea is
that the problem-solution procedure is entered in one distinct operation, and
thereafter the entire execution of the work on the problem is automatic.

