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Introduction

This is a textbook devoted to mathematical programming
algorithms and the mathematics needed to understand such
algorithms. It was mainly written for economists, but the
mathematics itself obviously has relevance for other disciplines.

It is a textbook as well as, in parts, a contribution to new
knowledge. There is, accordingly, a broad ordering of climbing
sophistication, the earlier chapters being purely for the
student, the later chapters being more specialist and containing
some element of novelty on certain points. The book is edited

in five parts.

Part I deals with elementary matrix operations, matrix
inversion, determinants, etc.

Part II is mainly devoted to linear programming.

As far as students' readability is concerned, these two parts
are. elementary undergraduate material.

However, I would claim, in particular with respect to linear
programming, that I do things more efficiently than the
standard textbook approach has it. This refers mainly to the
search for a feasible solution i.e. Chapter 9, and to upper
and lower limits, i.e. Chapter 10. I have also argued that the
standard textbook treatment of degeneracy misses a relevant
problem, namely that of accuracy.

In short, I would invite anyone who has the task of writing
or designing an LP-code, to first acquaint himself with my
ideas.
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.
Parts IIT and IV are concerned with nonlinear programming.
Part III gives the bulk of the theory in general terms including
additional matrix algebra. It was obviously necessary to
introduce definiteness at this point, but a full discussion of
latent roots is refrained from. Proofs are therefore given as
far as possible, without reference to eigenvalues. However,
certain results will have to be taken on trust by those readers
who have no prior knowledge on this point.

The main contribution to the literature made in part 2P
probably is Chapter 15, i.e. to explain both the first-order
conditions and the second order conditions for a constrained
maximum, in terms where one may expect the student to actually
understand this admittedly difficult problem.

The unconventional concept of subspace convexity is not, and
cannot be a true novelty; it is .equivalent, to the more usual
way of formulating the second order condition for a constrained
‘maximum in terms of determinants.

Part IV is concerned with quadratic programming. It does not
give a comprehensive survey of algorithms. It gives those
algorithms which I considered the most effici®nt, and the
easiest to explain and to be understood.

With respect to novelty, Chapters 16 and 17 do not contain any
original ideas or novel approaches, but some of the ideas
developed in Chapters 9 and 10 for the LP case are carried over
into quadratic programming. Chapter 19 does however, offer an
algorithm developed by myself, concerning quadratic programming
with quadratic side-conditious.

Part V deals with integer programming.

As in the QP case, the basic ingredients are taken from the
existing literature, but the branching algorithm of section 20.2,
although based on a well-established approach, was developed by
myself. Also, the use of upper and lower limits on the lines

of Chapter 10 proved particularly useful in the integer
programming context.

Nothing in this book is out of the reach of undergraduate
students, but if it is to be read in its entirety by people
without prior knowledge beyond "0" level mathematics, the
consecutive ordering of the material becomes essential and a
two-year period of assimilation with a break between Part II
and Part III would be preferable. However Parts IV and V

will generally be considered to be too specialist on grounds

of relevance and curriculum load, and accordingly be considered
more suitable for postgraduate students specializing in O.R.

or mathematical programming.
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The use of alphanumerical labels which are meaningful to the
human reader, e.g.

PHASE I:, MAKE THE STEP:, etc., and
corresponding goto statements e.g.

'GOTO' PHASE I; helps to bridge the gap between programme
description and programme-text in a way which is difficult
to achieve by comment (or its Fortran equivalent) only.

Many procédure'and programme texts also contain alphanumerical
labels which are there purely for the human reader, as there
are no corresponding goto statements.

While such labels are also possible in an "Algol-like"
language as, for example Pascal, they, cannot be used in Fortran.
Furthermore, Fortran is simply more primitive than Algol.
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I have made extensive use of block-structure and dynamic arrays
and as a result my programmes don't require more core-space

than is strictly necessary. Also, I gather that not all versions
of Fortran permit recursive calls in the way I have used them

in section 5.6 for the calculation of determinants and in
section 20.4 for branching in integer programming.

The value of the text-listings as a direct source of ready-made
programme-text is further compromised by the presence of
warning-messages, not only in the main programmes but also
inside the procedures.

The presence of these warning messages enhances the readability
for the human reader but, as they are system-specific, they will
in general require adaptation if the algorithms are to be applied
in a different machine-environment.
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(51)
gz = 300 (52)
X = 80 (53)

1.2 The use of a tableau

In section 1.1 three equations were written 5 times. Each time

the variable-names x,, xX,, and x, were written again. In total
5 : 3 1 2 3 o

we did this 15 times.

We can economize on our writing effort, by writing the names of
the variables only once. And if the procedure for obtaining a
system of equations from its predecessor is a standardized one,
we can dispense with explaining it every time. We could have
done the job by writing 5 tableaux, as listed below:

xl x‘: X3 =
0.867  -0.066 = ----— 240
-0.150 0.850  -———- 210
-0.167 -0.100 000y ==
1.000 -0.076  =———- 277
0.150 -0.011  ==--- 42
0.167  =0.013 . ---—-- 46
1.000 -0.076  ————- 277
m——— 0.839 . -—-= 252
o=  =0,113 1,000 46
. ah 1.000  ----- 300
T, 0.076 . —-=——-- 23
----- GiLif of e 34
1,000 ; 300
----- 1.000 s 300

__________ 1.000 80



CHAPTER II

MATRIX NOTATION

2.1 The purpose of matrix notation

Matrix notation provides a very compact way of describing
ceqﬁaln well-defined numerical operations. As such it saves
wﬁgtypg»qnd read1ng effort in written communication about
numeri 1 gg@;gn@gps. This applies to communication between one
human being and another. It also applies to machine-programming.
For most computers, there is by now a certain body of established
programmes, routines, carrying out specific matrix- and vector
operations. Reference to such routines saves programming effort.
The use of matrix notation has also facilitated the analysis of
numerical problems. This refers in particular to the properties
of linear equationr-systems. Such facilitation is really a
corollary of the reduction in effort. Problems, which were
formerly too complicated to grasp, now become manageable.

2.2 Some definitions and conventions

A matrix is a rectangular grouping of numbers, its elements.
The elements of a matrix are grouped into a number of rows;
each row containing the same number of elements, reading from
left to right. Alternatively, we can say that the elements of a
matrix are grouped into a number of columns, each column
containing the same number of elements, reading from top to
bottom. -

Matrices often occur as tableaux, containing statistical
information. For example:

British consumer's expenditure, Central Statistical Office:
"National Income and Expenditure'" (1967),

1964 1965 1966

Coal and coke 273 269 257
Electricity 381 417 435
_Gas 167 194 223
Other 58 60 58

Another application of tableaux (or matrices), was met in section
1.2: the arrangement of computations.
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The order parameters of a matrix are two non-negative integer
numbers. They are always listed in the same order. The first
number indicates the number of rows of the matrix; the second
order-parameter indicates the number of columns in the matrix.
Normally, order—-parameters will be positive numbers. But a more
general validity of certain statements in matrix algebra may be
obtained, if we admit the value of zero as a borderline case.

The number of elements in each row is the numbér of columns in
the matrix. And the number of elements in each column is the
number of rows in the matrix. It follows that the number of
elements in the matrix is the product of its order parameters.
A matrix of which the two order-parameters are equal is called
a square matrix,

To indicate a matrix, we can use a letter. A capital letter is
always used for that purpose. In printed text, a capital letter
indicating a matrix, is generally given in heavy print.

We might for instance have:

273 269 257 =L
381 417 435

167 194 223

58 60 58

A corresponding lower case letter, with 2 indices will indicate
an individual element of ‘a matrix.

For example, ¢ g 194.

The indices aré’always given in the same order: first the index
indicating the row, then the index indicating the column.

Not all numerical information is suitably presented in a
rectangular array. Suppose for instance we were interested only

in total expenditure on fuel and light:

1964 1965 1966

Expenditure on fuel and light 879 940 973

This is a vector. A vector is a matrix of which one of the order
parameter is known to be unity. We distinguish between rows
(matrices with only one row) and columns (matrices with only one
column). The (total) fuel and light expenditure, was presented
as a row. We could have presented it as a column as well.

To indicate a vector, we can use a letter. For that purpose, one
always uses a non-capital letter. Vectors are normally indicated
with italic print or heavy print, or in typescript — including
photographically reproduced typescript, as in this book, with
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underlining, to avoid confusion with indices. One should of
course not use capital letters, this would create confusion with
matrices.

Vectors will normally be assumed to be columns. When we want to
indicate a row, this will be done by adding a prime to the letter.

The order of \a vector is determined by listing the value of only
one order-parameter., Elements of a vector are indicated with a
small (non-c&pltal) letter, without heavy print or underlining,
with ~one ;ndax

For inStande, we might write: let t be a column-vector of order
3. We can also indicate the fact that a vector is a column (row)
by stating its order as m by 1 (1 by n).

We may then define a (column) vector of consumer's expenditure
on fuel and light, of order 3 (by 1).

879
940
973

=

The corresponding row-vector will be of order 1 by 3:

1y = [879 940  973]
The statement t' is a row-vector of order 1 by 3 is legitimate,
but gives more information than is strictly needed. The 1966
figure can be indicated either as t, = 973, or as t'3 = 973,
The prime is quite superfluous herej hence we normally write

= 973, Elements of a vector should always be indicated with
tgeir'index. The use of ordinary small letters without index or
heavy print (underlining), is conventionally reserved for
variables or coefficients of an integer nature, such as indices
and order-parameters.

Occasionally, one may also meet a single coefficient, which is
not an element of a matrix or vector. Such a scalar is then
indicated with a Greek letter. If required, a scalar can be
interpreted as a matrix of order 1 by 1, as a column of order 1,
or as a row of order 1.

A matrix which satisfies the property ajj = a,. (and therfore
obviously m = n) is called a symm mmetric matrix,-e.g.

P

A
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In paragraph 2 of this chapter, we met the following tableau:

British consumer's expenditure, at 1958 constant prices, on fuel
and light:

1964 1965 - 1966

Coal and coke 273 269 25

Electricity 1 381 417 435
Gas 167 194 223
Other y 58 60 258

Now consider the tableau:

British consumer's expenditure, at 1958 constant prices, on fuel
and light:

Coal & Elect- Cas Other
coke ricity
1964 [ 273 381 167 58
1965 ‘ 269 417 194 60
1966 257 435 223 58

It will be observed, that this tableau gives exactly the same
numerical information, as the previous one. But the presentation
is different.

The corresponding matrices are said to be each other's transpose

0273 342692 5T ot ; rof 273 #2381 1 16 k= 1458

C = [381 417 435 and C' = 269 417194 60
167 194 223 257 « 435, 223 - .58

58 60 58 \

The transpose of a matrix is another matrix, with the rows of
the first matrix as columns, and the columns of the first matrix
as rows. It is conventional to indicate a transposition by a
prime. : : :

It follows that if a matrix A is of order m by n, then A' is of
order n by m. The transpose of the transpose will have the rows
of the transpose (= the columns of the matrix itself) as columns,
and the columns of the transpose (= the rows of the matrix
itself) as rows. The transpose of the transpose is the matrix
itself, i.e.

(A")' = A



