THE MICHANIC PROPERTY. Biolo Inv MCGRAW-HILL EDUCATION HE MCGRAW-HILL COMPANIES

ns

Form,

Function,

Diversity,

and

Process

Warren D. Dolphin

Biological Investigations

Form, Function, Diversity, and Process

Warren D. Dolphin

Iowa State University

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

McGraw-Hill Higher Education

A Division of The McGraw-Hill Companies

BIOLOGICAL INVESTIGATIONS: FORM, FUNCTION, DIVERSITY, AND PROCESS SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2002, 1999, 1997 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

234567890 OPD/OPD 0987654321

ISBN 0-07-303141-0

Sponsoring editor: Patrick E. Reidy Developmental editor: Margaret B. Horn Senior marketing manager: Lisa L. Gottschalk

Project manager: Joyce Watters

Production supervisor: Sherry L. Kane

Designer: K. Wayne Harms

Cover image: Telegraph Colour Library/FPG International

Photo research coordinator: John C. Leland

Photo research: LouAnn K. Wilson

Senior supplement producer: Stacy A. Patch Executive producer: Linda Meehan Avenarius

Compositor: Shepherd, Inc. Typeface: 10/12 Times Roman Printer: Quebecor World Dubuque, IA

The credits section for this book begins on page 447 and is considered an extension of the copyright page.

Some of the laboratory experiments included in this text may be hazardous if materials are handled improperly or if procedures are conducted incorrectly. Safety precautions are necessary when you are working with chemicals, glass test tubes, hot water baths, sharp instruments, and the like, or for any procedures that generally require caution. Your school may have set regulations regarding safety procedures that your instructor will explain to you. Should you have any problems with materials or procedures, please ask your instructor for help.

PREFACE

This lab manual is dedicated to the many students and colleagues who have been my patient teachers. I hope that it returns some of what has been learned so that a new generation of biologists may soon add to our wonder of nature's ways while advancing our understanding

of life's diverse forms and processes. As reflected in the subtitle, this lab manual reflects fundamental biological principles based on the common thread of evolution: form reflects function; unity despite diversity; and the adaptive processes of life. The manual was written for use in a two-semester introductory biology course serving life science majors. I have emphasized investigatory, quantitative, and comparative approaches to studying the life sciences and have integrated physical sciences principles where appropriate. In choosing topics for inclusion, I sought to achieve a balance between experimental, observational, and comparative activities. The comments of several expert reviewers were incorporated into this revision, clarifying many points from previous editions. The activities included in each lab topic have been tested in multisection lab courses and are known to work well in the hands of

Throughout the manual, the concept of hypothesis testing as the basic method of inquiry has been emphasized. Starting with lab topic 1 on the scientific method, and reiterated in experimental topics throughout the manual, students are asked to form hypotheses to be tested during their lab work and then are asked to reach a conclusion to accept or reject their hypotheses. Hypothesis testing and a comparative trend analysis also have been added into the more traditional labs dealing with diversity so that students are guided to look across several labs in reaching conclusions. Labs investigating physiological systems and morphology emphasize the concept of form reflects function. Comparative activities are included to demonstrate the adaptations found in several organisms.

Nature of the Revisions

Several major changes were made in this edition. The plant section was thoroughly revised. The old plant phylogeny lab topic is now divided into two topics, the seedless and seed plants, to better reflect the time needed to study plant phylogeny, and alternation of generations is given greater emphasis. The section on the functional biology of angiosperms was also extensively revised. The

old transport lab topic was divided into two lab topics, one emphasizing plant tissue systems and primary root structure, and the other emphasizing primary and secondary growth in stems. In addition some experiments were changed in other labs. In Lab Topic 1 about the scientific method, the experiment was changed from one testing physical fitness to one that emphasizes reaction time so that less athletic students will feel included and the results are not as predictable before the experiment. A new fruit fly experiment has been added which has more of an investigative theme requiring students to determine the genotypes of unknowns they are given. It can be completed in two weeks rather than the four required for the old experiments. The microevolution lab topic was rewritten and now includes student activities and computer simulations to teach the Hardy Weinberg Principle instead of drawing beads from a container to illustrate statistical sampling. The taxonomic classifications for bacteria and protists were updated to reflect current thinking and the information in textbooks. In several of the exercises, the student activities were streamlined deleting experiments that usually were not performed for lack of time. All exercises were edited to improve clarity based on experience with students at Iowa State University.

New teaching elements were added as well. Each lab topic now starts with a Pre-lab Preparation section. In this section key vocabulary terms are listed and key concepts are named. The expectation is that students will realize that they must study vocabulary and concepts before coming to lab. Lab instructors can reinforce this realization by giving short quizzes before starting lab work. At the end of each lab topic, there is a section entitled "Learning Biology by Writing." For those departments that have strong writing-across-the-curriculum emphases, the suggested assignments will complement their goals. Several new Critical Thinking and Lab Summary Questions have also been added at the end of each lab topic.

Organization of Lab Topics

The lab topics have a standard format. All start with the Pre-lab Preparation section. This is followed by a list of equipment, organisms, and solutions to be used during the lab, informing students about what they will encounter in the lab. A brief introduction explains the biological principles to be investigated. These introductions are not meant to replace a textbook. They are included

to summarize ideas that students will have had in lecture and to discuss how they apply to the lab. The lab instructions are detailed and allow students to proceed at their own pace through either experimental or observational lab work. Dangers are noted and explained. Data tables help students organize their lab observations. Questions are interspersed to avoid a cookbook approach to science and spaces are provided for answers and sketches. New terms are in boldface the first time used and are followed by a definition. At the end of each lab topic, several alternative suggestions are given for summarizing the lab work. A Learning Biology by writing section usually describes a writing assignment or lab report. Critical thinking questions emphasize applications. A lab summary based on several questions organizes the reporting of lab activities in a more stepwise approach. An Internet sources section points the students toward information sources on the WWW. Appendices include discussions of the use of significant figures, directions on making graphs, a description of elementary statistics, and instructions of how to write a lab report.

WWW Site

Under the sponsorship of McGraw-Hill, a WWW site has been established for this manual at http://www.mhhe.com/dolphin/

There you will find a preparator's manual giving recipes of chemical solutions and sources of supplies for each of the exercises. Also included is a list of links to other WWW sites which have materials relevant to the topics that students are investigating in the labs. If you know of links that should be included, please send them to me by E-mail (wdolphin@iastate.edu).

Acknowledgments

I would especially like to thank James Colbert, Associate Professor of Botany at Iowa State University, for his helpful comments and his patience in explaining plant biology. I also wish to thank the critical reviewers who made constructive suggestions throughout the writing of this manual: William Barstow, University of Georgia; Daryl Sweeney, University of Illinois; Gerald Gates, University of Redlands; Marvin Druger, Syracuse University; Thomas Mertens, Ball State University; Cynthia M. Handler, University of Delaware; Stan Eisen, Christian Brothers College; Paul Biebel, Dickinson College; Stephen G. Saupe, St. Johns University (Minnesota); Sidney S. Herman, Lehigh University; Margaret Krawiec, Lehigh University; Charles Lycan, Tarrant County Junior College; Olukemi Adewusi, Ferris State University; Karel Rogers, Adams State College; Peter A. Lauzetta, Kingsborough Community College (CUNY); Maria Begonia, Jackson State University; Thomas Clark Bowman, Citadel Military College; Gary A. Smith, Tarrant County Junior College; Timothy A. Stabler, Indiana University Northwest; William J. Zimmerman, University of Michigan-Dearborn; and Nancy Segsworth, Capilano College (British Columbia).

Reviewers

Naomi D'Alessio, Nova Southeastern University
Carolyn Alia, Sarah Lawrence College
Linda L. Allen, Lon Morris College
Gordon Atkins, Andrews University
E. Rena Bacon, Ramapo College of New Jersey
Nina Caris, Texas A & M University
James T. Colbert, Iowa State University
Angela Cunningham, Baylor University
Carolyn Dodson, Chattanooga State Technical
Community College

Frank J. Dye, Western Connecticut State University
Phyllis C. Hirsch, East Los Angeles College
Cathleen M. Jenkins, Cuyahoga Community College
Shelley Jones, Florida Community College at
Jacksonville

Elaine King, Environmental Biologist, Consultant Sonya Michaud Lawrence, Michigan State University Raymond Lewis, Wheaton College Brian T. Livingston, University of Missouri—

Kansas City

Charles Lycan, Tarrant County Junior College Northwest Campus

Jacqueline S. McLaughlin, Penn State Berks-Lehigh Valley College

Susan Petro, Ramapo College of New Jersey-Gary Shields, Kirkwood Community College Gary A. Smith, Tarrant County Junior College Joan F. Sozio, Stonehill College David Steen, Andrews University Geraldine W. Twitty, Howard University Carl Vaughan, University of New Hampshire Lise Wilson, Siena College Ming Y. Zheng, Houghton College

Margaret Horn, editor at McGraw-Hill Publishers, was most helpful during the preparation of the revisions, and I thank her for her patience and support. Special thanks goes to my friend and illustrator Dean Biechler who operates Chichaqua Bend Studios and to students of the Biological/Pre-Medical Illustration Program at Iowa State University. They prepared the illustrations for this and several of the earlier editions of the lab manual. By working directly with them, I have clarified many of my understandings of biology and have truly developed an appreciation of how form reflects function in biological systems. Last, but certainly not least, I thank my family—Judy, Jenny, Garth, Shannon and Lara—for their support throughout the preparation of this and earlier editions.

If you have questions or comments, please contact me by E-mail (wdolphin@iastate.edu.).

Preface

	Audesirk & Audesirk &	Campbell, Reece & Mitchell	Lewis et al.	Mader	Purves, Sadava, Orianes & Heller	Raven & Johnson	Solomon, Berg, & Martin
Lab Topic	Biology, 5th ed.	Biology, 5th ed.	Life, 4th ed.	Biology, 7th ed.	Life, 6th ed.	Biology, 6th ed.	Biology, 5th ed.
1. Science: A Way of Gathering Knowledge	1	1	1_	1	1	1	1
2. Techniques in Microscopy	6	7	3	4	4	5	4
3. Cellular Structure Reflects Function	6	7	3	4	4	5	4
4. Determining How Materials Enter Cells	5	8	4	5	5	6	5
5. Quantitative NA Techniques and Statistics		NA	NA	NA	NA	NA	NA
6. Determining the Properties of an Enzyme	4	6	5	6	6	8	6
7. Measuring Cellular Respiration	8	9	6	6	7 1	9	7
8. Determining Chromosome Number in Mitotic Cells	11	12	8	9	9	11	9
9. Observing Meiosis and Determining Crossover Frequency	11	13	9	10	9	13	10
10. Using Mendelian Principles to Determine the Genotypes of Fruit Flies	12	14, 15	10, 11	11, 12	10	13	10_
11. Isolating DNA and Working with Plasmids	9, 13	16, 20	12	14, 17	11, 17	14, 19	11, 14
12. Testing Assumptions in Microevolution and Inducing Mutations	15	23	13, 15	16, 19	21	20, 21	18
13. Using Bacteria as Experimental Organisms	19	27	20	29	26	34	23
14. Diversity Among Protists	19	28	21	30	27	35	24
15. Plant Phylogeny: Seedless Plants	21	29	22	32	28	37	26
16. Plant Phylogeny: Seed Plants	21	30	22	32	29 •	37	27
17. Fungal Diversity and Symbiotic Relationships	20	31	23	31	30	36	25
18. Early Events in Animal Development	36	32, 47		51	16, 43	60	49

CORRELATION	TABLE	How lab topics	correlate with	chapters in	major textb	ooks (contin	ued)
19. Animal Phylogeny: Evolution of Body Plan	22	33	24	33	31	44	28
20. Protostomes I: Evolutionary Development of Complexity	22	-33	24	34	31	45	29
21. Protostomes II: A Body Plan Allowing Great Diversity	22	33	24	34	32	46	29
22. Deuterstomes: Origins of the Vertebrates	22	37	25	35	33	47, 48	30
23. Investigating Plant Tissues and Root Structure	23	35	26, 27	36	34	38, 39	31
24. Investigating Stem Structure, Growth, and Function	23	36	27	36, 37	35	39	33
25. Investigating Leaf Structure and Photosynthesis	7	10	6	7	8	10	8, 3
26. Investigating Angiosperm Reproduction and Development	24	38, 39	28, 29	39	37, 38	40, 42, 43	35, 3
27. Investigating Digestive and Gas Exchange Systems	28, 29	41, 42	36, 37	43, 44	48, 50	51, 53	44,
28. Investigating Circulatory Systems	27	42	35	41	49	52	- 42
29. Investigating the Excretory and Reproductive Systems	30, 35	44, 46	. 38	50	40, 42, 51	58, 59	46,
30. Investigating Form and Function in Muscle and Skeletal Systems	34	49	34	48	47	50	38
31. Investigating the Nervous and Sensory Systems	33	48, 49	31	46, 47	44, 45, 46	54, 55	39, 40,
32. Statistically Analyzing Simple Behaviors	37	51	41	22	52	27	50
33. Estimating Population Size and Growth	38	52	43	23	54	24	5
34. Standard Assays of Water Quality	40	54	44	25	56	29, 30	54,

BRIEF CONTENTS

Preface x Correlation Table xii

Lab Topic 1	Science: A Way of Gathering	
Knowledge	1	
Lab Topic 2	Techniques in Microscopy 11	
Lab Topic 3	Cellular Structure Reflects Function 19	
Lab Topic 4	Determining How Materials Enter Cells	3
Lab Topic 5	Quantitative Techniques and Statistics	4
	Determining the Properties of an	
Enzyme 53		

Lab Topic 7 Measuring Cellular Respiration 67
Lab Topic 8 Determining Chromosome Number

in Mitotic Cells 77

Lab Topic 9 Observing Meiosis and Determining Cross-Over Frequency 89

Lab Topic 10 Determining Genotypes of Fruit Flies 101

Lab Topic 11 Isolating DNA and Working with Plasmids 115

Lab Topic 12 Testing Assumptions in Microevolution and Inducing Mutations 125

Lab Topic 13 Using Bacteria as Experimental Organisms 139

Lab Topic 14 Diversity Among Protists 147

Lab Topic 15 Investigating Plant Phylogeny: Seedless Plants 163

Lab Topic 16 Investigating Plant Phylogeny: Seed Plants 177

Lab Topic 17 Observing Fungal Diversity and Symbiotic Relationships 193

Lab Topic 18 Investigating Early Events in Animal Development 205

Lab Topic 19 Animal Phylogeny: Investigating Evolution of Body Plan 217

Lab Topic 20 Protostomes I: Investigating Evolutionary Development of Complexity 233

Lab Topic 21 Protostomes II: Investigating a Body Plan Allowing Great Diversity 245

Lab Topic 22 Deuterostomes: Investigating the Origins of the Vertebrates 259

Lab Topic 23 Investigating Plant Tissues and Primary Root Structure 273

Lab Topic 24 Investigating Primary Structure, Secondary Growth, And Function of Stems 287

Lab Topic 25 Investigating Leaf Structure and Photosynthesis 299

Lab Topic 26 Angiosperm: Reproduction, Germination, and Development 313

Lab Topic 27 Investigating Digestive and Gas Exchange Systems 331

Lab Topic 28 Investigating Circulatory Systems 347

Lab Topic 29 Investigating the Excretory and Reproductive Systems 361

Lab Topic 30 Investigating the Properties of Muscle and Skeletal Systems 373

Lab Topic 31 Investigating Nervous and Sensory
Systems 391

Lab Topic 32 Statistically Analyzing Simple Behaviors 403

Lab Topic 33 Estimating Population Size and Growth 413

Lab Topic 34 Performing Standard Assays of Water Quality 425

Appendix A Significant Figures and Rounding 433

Appendix B Making Graphs 435

Appendix C Simple Statistics 437

Appendix D Writing Lab Reports and Scientific Papers 444

CONTENTS

Preface x Correlation Table xii

Lab Topic 1 Science: A Way of Gathering Knowledge 1

Supplies 1
Prelab Preparation 1
Objectives 1
Background 1
Lab Instructions 3
Using the Scientific Method 3
Scientific Method Assignment 6
Evaluating Published Information 6
Journal Analysis Form 10

Lab Topic 2 Techniques in Microscopy 11

Supplies 11
Prelab Preparation 11
Objectives 11
Background 11
Lab Instructions 12
The Compound Microscope 13
The Compound Microscope Image 14
Measurement of Microscopic Structures 16
Stereoscopic Dissecting Microscopes 16
Learning Biology by Writing 18
Lab Summary Questions 18
Critical Thinking Questions 18

Lab Topic 3 Cellular Structure Reflects Function 19

Supplies 19
Prelab Preparation 19
Objectives 19
Background 19
Lab Instructions 20
Prokaryotic Cells 20
Eukaryotic Cells 22
Learning Biology by Writing 29
Lab Summary Questions 29
Critical Thinking Questions 30

Lab Topic 4 Determining How Materials Enter Cells 31

Supplies 31 Prelab Preparation 31 Objectives 31 Background 32 Lab Instructions 33 Simultaneous Osmosis and Diffusion Brownian Movement 35 Osmosis 35 Diffusion in Gels 36 Diffusion in Gases (Optional Demonstration) *36 Osmosis in Living Cells 37 Learning Biology by Writing 40 Internet Sources 40 Lab Summary Questions 40 Critical Thinking Questions 40

Lab Topic 5 Quantitative Techniques and Statistics 41

Supplies 41
Prelab Preparations 41
Objectives 41
Lab Instructions 41
Pipette Technique 41
Verifying Techniques 42
Simple Statistics 43
Spectrophotometry 46
Learning Biology by Writing 50
Lab Summary Questions 50
Critical Thinking Questions 50

Lab Topic 6 Determining the Properties of an Enzyme 53

Supplies 53
Prelab Preparation 53
Objectives 53
Background 53
Peroxidase 54

Lab Instructions 55	
Preparing an Extract Containing Peroxidase	55
Standardizing the Amount of Enzyme 55	
Factors Affecting Enzyme Activity 57	
Analysis 62	
Learning Biology by Writing 62	
Purpose 62	
Techniques 62	
Results 62	
Discussion 62	
Internet Sources 63	
Lab Summary Questions 63	
Critical Thinking Questions 63	

Lab Topic 7 Measuring Cellular Respiration 67

Supplies 67
Prelab Preparation 67
Objectives 67
Background 67
Lab Instructions 68
Respiration in Yeast 68
Aerobic Respiration in Peas 70
Learning Biology by Writing 73
Lab Summary Questions 74
Critical Thinking Questions 74

Lab Topic 8 Determining Chromosome Number in Mitotic Cells 77

Supplies 77
Prelab Preparation 77
Objectives 77
Background 77
Lab Instructions 79
Mitosis in Animal Cells 79
Mitosis in Plant Cells 80
Staining Dividing Cells 81
Testing a Hypothesis 83
Learning Biology by Writing 86
Internet Sources 86
Lab Summary Questions 86
Critical Thinking Questions 86

Lab Topic 9 Observing Meiosis and Determining Cross-Over Frequency 89

Supplies 89
Prelab Preparation 89
Objectives 89
Background 89
Meiosis in Ascaris 91
Measuring the Frequency of Crossing-Over 94
Learning Biology by Writing 98

Internet Sources 98 Lab Summary Questions 99 Critical Thinking Questions 99

Lab Topic 10 Determining Genotypes of Fruit Flies 101

Supplies 101 Prelab Preparation 101 Objectives 102 Background 102 Lab Instructions 102 Life Cycle of the Fruit Fly 102 Anatomy of the Fruit Fly 103 Giant Chromosomes in Drosophila (Optional) 104 Theoretical Background for Crosses 105 Applying Chromosomal Models to Crosses 107 Setting Crosses to Determine Genotypes 111 Killing and Counting the Offspring 111 Analysis 112 Learning Biology by Writing 113 Internet Sources 113 Lab Summary Questions 113 Critical Thinking Questions 113

Lab Topic 11 Isolating DNA and Working with Plasmids 115

Supplies 115
Prelab Preparation 115
Objectives 115
Background 116
Lab Instructions 117
Isolation of Genomic DNA 117
Determining the Amount of DNA in Solution 118
Transformation by Plasmids 119
Analysis 121
Learning Biology by Writing 122
Lab Summary Questions 122
Critical Thinking Questions 122
Internet Sources 122

Lab Topic 12 Testing Assumptions in Microevolution and Inducing Mutations 125

Supplies 125
Prelab Preparation 125
Objectives 125
Background 125
Lab Instructions 128
Mating Game 128
Computer Simulation of Microevolution 130
Experimental Induction of Mutations 133

Learning Biology by Writing 135 Internet Sources 135 Lab Summary Questions 135 Critical Thinking Questions 135

Lab Topic 13 Using Bacteria as Experimental Organisms 139

Supplies 139 Prelab Preparation 139 Objectives 139 Background 140 Lab Instructions 140 Bacterial Cell Shapes 140 Gram's Staining 140 Determinative Microbiology 142 Bacterial Population Counts 143 Where do Bacteria Live 143 Applied Microbiology 143 Cyanobacteria 144 Learning Biology by Writing 146 Lab Summary Questions 146 Internet Sources 146 Critical Questions 146

Lab Topic 14 Diversity Among Protists 147

Supplies 147
Prelab Preparation 147
Objectives 147
Background 148
Lab Instructions 149
Candidate Kingdom Euglenozoa 149
Candidate Kingdom Alveolata 149
Candidate Kingdom Stramenopila 152
Candidate Kingdom Chlorophyta 154
Amoeba Group 159
Mold Group 160
Learning Biology by Writing 160
Lab Summary Questions 160
Internet Sources 161
Critical Thinking Questions 161

Lab Topic 15 Investigating Plant Phylogeny: Seedless Plants 163

Supplies 163
Prelab Preparation 163
Objectives 164
Background 164
Plant Adaptations to Land 165
Lab Instructions 165
Bryophytes 165
Tracheophytes 170
Learning Biology by Writing 175

Lab Summary Questions 175 Internet Sources 175 Critical Thinking Questions 175

Lab Topic 16 Investigating Plant Phylogeny: Seed Plants 177

Supplies 177
Prelab Preparation 177
Objectives 178
Background 178
Lab Instructions 179
Gymnosperms 179
Angiosperms 185
Plant Key 190
Learning Biology by Writing 191
Internet Sources 191
Lab Summary Questions 191
Critical Thinking Questions 192

Lab Topic 17 Observing Fungal Diversity and Symbiotic Relationships 193

Supplies 193
Prelab Preparation 193
Objectives 193
Background 193
Lab Instructions 195
Observation of Field Samples 195
Division Chytridiomycota 195
Division Zygomycota 196
Ascomycota: The Sac Fungi 198
Basidiomycota 199
Fungal Associations 201
Learning Biology by Writing 204
Lab Summary Questions 204
Internet Sources 204
Critical Thinking Questions 204

Lab Topic 18 Investigating Early Events in Animal Development 205

Supplies 205
Prelab Preparation 205
Objectives 205
Background 206
Lab Instructions 206
Sea Star Development 206
Cleavage Patterns in Invertebrate Animals 208
Experimental Embryology with Sea
Urchins 209
Chick Development 211
Learning Biology by Writing 215
Lab Summary Questions 215
Internet Sources 216
Critical Thinking Questions 216

Lab Topic 19 Animal Phylogeny: Investigating Evolution of Body Plan 217

Supplies 217
Prelab Preparation 217
Objectives 217
Background 218
Lab Instructions 219
Phylum Porifera 220
Phylum Cnidaria 221
Phylum Platyhelminthes 224
Phylum Nematoda 227
Learning Biology by Writing 231
Lab Summary Questions 231
Internet Sources 232
Critical Thinking Questions 232

Lab Topic 20 Protostomes I: Investigating Evolutionary Development of Complexity 233

Supplies 233
Prelab Preparation 233
Objectives 233
Background 233
Lab Instructions 234
Phylum Annelida 234
Phylum Mollusca 239
Learning Biology by Writing 244
Internet Sources 244
Lab Summary Questions 244
Critical Thinking Questions 244

Lab Topic 21 Protostomes II: Investigating a Body Plan Allowing Great Diversity 245

Supplies 245
Prelab Preparation 245
Objectives 245
Background 245
Lab Instructions 246
Chelicerate Arthropods 246
Mandibulate Arthropods 248
Uniramian Arthropods 254
Key to Orders of Insects 256
Learning Biology by Writing 257
Internet Sources 257
Lab Summary Questions 257
Critical Thinking Questions 257

Lab Topic 22 Deuterostomes: Investigating the Origins of the Vertebrates 259

Supplies 259 Prelab Preparation 259 Objectives 259 Background 259
Lab Instructions 260
Phylum Echinodermata 260
Phylum Chordata 262
Learning Biology by Writing 270
Internet Sources 270
Lab Summary Questions 271
Critical Thinking Questions 271

Lab Topic 23 Investigating Plant Tissues and Primary Root Structure 273

Supplies 273
Prelab Preparation 273
Objectives 273
Background 274
Lab Instructions 275
Plant Cells and Tissues 275
Root Systems 280
Whole Roots 280
Root Histology 280
Learning Biology by Writing 284
Lab Summary Questions 284
Internet Sources 284
Critical Thinking Questions 285

Lab Topic 24 Investigating Primary Structure, Secondary Growth, and Function of Stems 287

Supplies 287
Prelab Preparation 287
Objectives 287
Background 288
Lab Instructions 289
Stem Structure 289
Transpiration (Demonstration) 295
Guard-Cell Response to Osmotic Stress 296
Learning Biology by Writing 298
Lab Summary Questions 298
Internet Sources 298
Critical Thinking Questions 298

Lab Topic 25 Investigating Leaf Structure and Photosynthesis 299

Supplies 299
Prelab Preparation 299
Objectives 299
Background 300
Lab Instructions 301
Types of Leaves 301
Internal Leaf Anatomy 302
Photosynthetic Pigments 304
Light Intensity and Photosynthetic Rate 306
Learning Biology by Writing 308

Internet Sources 308 Lab Summary Questions 308 Critical Thinking Questions 309

Lab Topic 26 Angiosperm: Reproduction, Germination, and Development 313

Supplies 313
Prelab Preparation 313
Objectives 314
Background 314
Lab Instructions 315
Sexual Reproduction 315
Embryo Development 321
Seeds 321
Fruits 323
Investigating the Effects of Hormones on Plant
Development 324
Learning Biology by Writing 328
Internet sources 328
Lab Summary Questions 328
Critical Thinking Questions 328

Interchapter Investigating Animal Form and Function 329

Vertebrates 329
General Dissection Information 329

Lab Topic 27 Investigating Digestive and Gas Exchange Systems 331

Supplies 331
Prelab Preparation 331
Objectives 332
Background 332
Lab Instructions 333
Invertebrate Feeding Behavior in Hydra 333
Mammalian Digestive System 334
Alimentary Canal Anatomy 334
Invertebrate Respiratory Systems 338
Mammalian Respiratory System 240
Learning Biology by Writing 346
Internet Sources 346
Lab Summary Questions 346
Critical Thinking Questions 346

Lab Topic 28 Investigating Circulatory Systems 347

Supplies 347
Prelab Preparation 347
Objectives 347
Background 347

Lab Instructions 348
Invertebrate Circulatory System 349
Mammalian Circulatory System 349
Learning Biology by Writing 357
Internet Sources 357
Lab Summary Questions 358
Critical Thinking Questions 359

Lab Topic 29 Investigating the Excretory and Reproductive Systems 361

Supplies 361
Prelab Preparation 361
Objectives 361
Background 361
Lab Instructions 362
Invertebrate Excretory Systems 362
Mammalian Excretory System 363
Mammalian Reproductive System 364
Learning Biology by Writing 371
Internet Sources 371
Lab Summary Questions 371
Critical Thinking Questions 371

Lab Topic 30 Investigating the Properties of Muscle and Skeletal Systems 373

Supplies 373 Prelab Preparation 373 Objectives 373 Background 373 Lab Instructions 375 Muscular System 375 Microscopic Anatomy of Muscle 375 Fetal Pig Superficial Muscles 377 Physiology of Muscle 379 Skeletal Systems 382 Invertebrate Skeletons 382 Comparative Vertebrate Endoskeletons 384 Skeletal System Summary 386 Learning Biology by Writing 389 Internet Sources 389 Lab Summary Questions 389 Critical Thinking Questions 389

Lab Topic 31 Investigating Nervous and Sensory Systems 391

Supplies 391
Prelab Preparation 391
Objectives 391
Background 392
Lab Instructions 393
Microanatomy of the Nervous System 393

Mammalian Nervous System 395 Sensory Systems 398 Learning Biology by Writing 402 Internet Sources 402 Lab Summary Questions 402 Critical Thinking Questions 402

Lab Topic 32 Statistically Analyzing Simple Behaviors 403

Supplies 403
Prelab Preparation 403
Objectives 403
Background 403
Lab Instructions 404
Hypothesis to Be Tested 404
Phototaxis 404
Geotaxis 405
Combined Test of Phototaxis and
Geotaxis 406
Statistical Analysis of Results 407
Learning Biology by Writing 410
Internet Sources 411
Lab Summary Questions 411
Critical Thinking Questions 411

Lab Topic 33 Estimating Population Size and Growth 413

Supplies 413
Prelab Preparation 413
Objectives 413
Background 413
Lab Instructions 414
Quadrat Sampling of Vegetation 414
Mark and Recapture 417
A Growth Curve Problem 419
Computer-Generated Growth Curves 420
Learning Biology by Writing 421
Internet Sources 421
Lab Summary Questions 421
Critical Thinking Questions 421

Lab Topic 34 Performing Standard Assays of Water Quality 425

Supplies 425
Prelab Preparation 425
Objectives 425
Background 426

Lab Instructions 426
Coliform Bacteria Test 426
Dissolved Oxygen 428
Demonstration of Bedrock Buffering 431
Learning Biology by Writing 432
Internet Sources 432
Lab Summary Questions 432
Critical Thinking Questions 432

Appendix A Significant Figures and Rounding 433

What Are Significant Figures? 433
Doing Arithmetic with Significant Figures 433
What Is Rounding? 433
Examples of Rounding 434

Appendix B Making Graphs 435

Line Graphs 435 Histograms 435

Appendix C Simple Statistics 437

Dealing with Measurement Data 437
Comparing Count Data: Dealing with
Variability 440
Scientific Hypothesis 440
Testing the Null Hypothesis 441
Making a Decision about the Null
Hypothesis 441
A Hypothetical Alternative 442

Appendix D Writing Lab Reports and Scientific Papers 444

Format 444
Title 444
Abstract 444
Introduction 444
Materials and Methods 444
Results 445
Discussion 445
Literature Cited 445
General Comments on style 445
Further Readings 446

Credits 447

LAB TOPIC 1

Science: A Way of Gathering Knowledge

Supplies

Preparator's guide available at http://www.mhhe.com/dolphin

Materials

Meter sticks

Photo copies of newspaper, magazine, and journal articles about biology (AIDS, rainforests, or cloning would be good examples, especially if articles were coordinated so students see same material intended for different audiences.)

Prelab Preparation

Before doing this lab, you should read the introduction and sections of the lab topic that have been scheduled by the instructor.

You should use your textbook to review the definitions of the following terms:

Dependent variable Hypothesis Independent variable Scientific literature

You should be able to describe in your own words the following concepts:

Critical reading Experimental design Reaction time Scientific method

As a result of this review, you most likely have questions about terms, concepts, or how you will do the experiments included in this lab. Write these questions in the space below or in the margins of the pages of this lab topic. The lab experiments should help you answer these questions, or you can ask your instructor for help during the lab.

Objectives

- 1. To understand the central role of hypothesis testing in the modern scientific method
- 2. To design and conduct an experiment using the scientific method
- 3. To summarize sample data as charts and graphs; to learn to draw conclusions from data
- 4. To evaluate writing for its science content and style

Background

Many dictionaries define science as a body of knowledge dealing with facts or truths concerning nature. The emphasis is on facts, and there is an implication that absolute truth is involved. Ask scientists whether this is a reasonable definition and few will agree. To them, science is a process. It involves gathering information in a certain way to increase humankind's understanding of the facts, relationships, and laws of nature. At the same time, they would add that this understanding is always considered tentative and subject to revision in light of new discoveries.

Science is based on three fundamental principles:

The *principle of unification* indicates that any explanation of complex observations should invoke a simplicity of causes such that the simplest explanation with the least modifying statements is considered the best; also known as the law of parsimony.

The second principle is that *causality is universal*; when experimental conditions are replicated, identical results will be obtained regardless of when or where the work is repeated. This principle allows science to be self-analytical and self-correcting, but it requires a standard of measurement and calibration to make results comparable.

The third principle is that of the *uniformity of nature*; it states that the future will resemble the past so that what we learned yesterday applies tomorrow.

For many, science is just a refined way of using common sense in finding answers to questions. During our everyday lives, we try to determine cause and effect relationships and presume that what happened in the past has a high probability of happening in the future. We look for relationships in the activities that we engage in, and in the phenomena that we observe. We ask ourselves questions about these daily experiences and often propose tentative explanations that we seek to confirm through additional observations. We interpret new information in light of

previous proposals and are always making decisions about whether our hunches are right or wrong. In this way, we build experience from the past and apply it to the future. The process of science is similar.

The origin of today's scientific method can be found in the logical methods of Aristotle. He advocated that three principles should be applied to any study of nature:

- 1. One should carefully collect observations about the natural phenomenon.
- 2. These observations should be studied to determine the similarities and differences; i.e., a compare and contrast approach should be used to summarize the observations.
- 3. A summarizing principle should be developed.

While scientists do not always follow the strict order of steps to be outlined, the modern scientific method starts, as did Aristotle, with careful observations of nature or with a reading of the works of others who have reported their observations of nature. A scientist then asks questions based on this preliminary information-gathering phase. The questions may deal with how something is similar to or different from something else or how two or more observations relate to each other. The quality of the questions relates to the quality of the preliminary observations because it is difficult to ask good questions without first having an understanding of the subject.

After spending some time in considering the questions, a scientist will state a research hypothesis, a general answer to a key question. This process consists of studying events until one feels safe in deciding that future events will follow a certain pattern so that a prediction can be made. In forming a hypothesis, the assumptions are stated and a tentative explanation proposed that links possible cause and effect. A key aspect of a hypothesis, and indeed of the modern scientific method, is that the hypothesis must be falsifiable; i.e., if a critical experiment were performed and yielded certain information, the hypothesis would be declared false and would be discarded, because it was not useful in predicting any natural phenomenon. If a hypothesis cannot be proven false by additional experiments, it is considered to be tentatively true and useful, but it is not considered absolute truth. Possibly another experiment could prove it false, even though scientists cannot think of one at the moment. Thus, recognize that science does not deal with absolute truths but with a sequence of probabilistic explanations that when added together give a tentative understanding of nature. Science advances as a result of the rejection of false ideas expressed as hypotheses and tested through experiments. Hypotheses that over the years are not falsified and which are useful in predicting natural phenomena are called theories or principles-for example, the principles of Mendelian genetics.

Hypotheses are made in mutually exclusive couplets called the **null hypothesis** (\mathbf{H}_o) and the **alternative hypothesis** (\mathbf{H}_a) . The null hypothesis is stated as a negative

and the alternative as a positive. For example, when crossing fruit flies a null hypothesis might be that the principles of Mendelian genetics do not predict the outcomes of the experiment. The alternative hypothesis would be that Mendelian principles do predict the outcome of the experiment. As you can see, rival hypotheses constitute alternative, mutually exclusive statements: both cannot be true.

The purpose in proposing a null hypothesis is to make a statement that could be proven false if data were available. Experiments or reviews of previously conducted experiments provide the data and are therefore the means for testing hypotheses. In designing experiments to test a hypothesis, predictions are made. If the hypothesis is accurate, predictions based on it should be true. In converting a research hypothesis into a prediction, a deductive reasoning approach is employed using if-then statements: if the hypothesis is true, then this will happen when an experimental variable is changed. The experiment is then conducted and as certain variables are changed, the response is observed. If the response corresponds to the prediction, the hypothesis is supported and accepted; if not, the hypothesis is falsified and rejected.

The design of experiments to test hypotheses requires considerable thought! The variables must be identified, appropriate measures developed, and extraneous influences must be controlled. The **independent variable** is that which will be varied during the experiment; it is the cause. The **dependent variable** is the effect; it should change as a result of varying the independent variable. **Control variables** are also identified and are kept constant throughout the experiment. Their influence on the dependent variable is not known, but it is reasoned that if kept constant they cannot cause changes in the dependent variable and confuse the interpretation of the experiment.

Once the variables are defined, decisions must be made regarding how to measure the effect of the variables. Measures may be quantitative (numerical) or qualitative (categorical) and imply the use of a standard. The metric system has been adopted as the international standard for science. If the independent variables are to be varied, a decision must be made concerning the scale or level of the treatments. For example, if something is to be warmed, what will be the range of temperatures used? Most biological material stops functioning (dies) at temperatures above 40°C and it would not be productive to test at temperatures every 10°C throughout the range 0° to 100°C. Another aspect of experimental design is the idea of replication: how many times should the experiment be repeated in order to have confidence in the results and to develop an appreciation in the variability of the response.

Once collected, experimental data are reviewed and summarized to answer the question: does the data falsify or support the null hypothesis? The research conclusions then state the decision regarding the acceptability of the null hypothesis and discuss the implications of the decision.

If the experimental data are consistent with the predictions from the null hypothesis, the hypothesis is supported,

but not proven absolutely true. It is considered true only on a trial basis. If the hypothesis is in a popular area of research, others may independently devise experiments to test the same hypothesis. A hypothesis that cannot be falsified, despite repeated attempts, will gradually be accepted by others as a description that is probably true and worthy of being considered as suitable background material when making new hypotheses. If, on the other hand, the data do not conform to the prediction based on the null hypothesis, the hypothesis is rejected and the alternative hypothesis is supported.

Modern science is a collaborative activity with people working together in a number of ways. When a scientist reviews the work of others in journals or when scientists work in lab teams, they help one another with interpretation of data and in the design of experiments. When a hypothesis has been tested in a lab and the results are judged to be significant, she or he then prepares to share this information with others. This is done by preparing a presentation for a scientific meeting or a written article for a journal. In both forms of communication, the author shares the preliminary observations that led to the forming of the hypothesis, the data from the experiments that tested the hypothesis, and the conclusions based on the data. Thus, the information becomes public and is carefully scrutinized by peers who may find a flaw in the logic or who may accept it as a valuable contribution to the field. Thus, the scientific discussion fostered by presentation and publication creates an evaluation function that makes science self-correcting. Only robust hypotheses survive this careful scrutiny and become the common knowledge of science.

LAB INSTRUCTIONS

You will create a research hypothesis, design an experiment to test it, conduct the experiment, summarize the data, and come to a conclusion about the acceptability of the hypothesis. You will also practice evaluating scientific information from various published sources.

Using the Scientific Method

Description of the Problem

Working in groups of four, you are to develop a scientific hypothesis and test it. The topic will be neuromuscular reaction time. This can be easily measured in the lab by measuring how quickly a person can grasp a falling meter stick. The person whose reaction time is being measured sits at a table with her or his forearm on the top and the hand extended over the edge, palm to the side and the thumb and forefinger partially extended. A second person holds a meter stick just above the extended fingers and drops it. The subject tries to catch it. The distance the meter stick drops is a measure of reaction time.

Your assignment is to create a scientifically answerable question regarding reaction time in individuals with different characteristics and to express this as testable hypotheses. You will then design an experiment to test the hypotheses, collect the data, analyze, and come to a decision to reject or accept your hypothesis. For example, you might investigate the differences between those who play musical instruments and those who do not or try a more complex design that investigates gender differences in reaction time for students who are in some type of athletic training versus those who are not. The design will depend on the hypotheses that you decide to test as a group in your lab section. Continuing the example, you might propose a null hypothesis that there will be no significant differences in reaction time between musicians and nonmusicians. An alternative hypothesis would be that there is a significant difference in the reaction times between the two types.

Summarizing Observations

Start your discussion of this assignment by summarizing the collective knowledge of your group about neuromuscular response time. Are these responses the same for all people or might they vary by athletic history, gender, body size, age, hobbies requiring manual dexterity, left versus right hand, or other factors? Be sure to consider these factors in both a qualitative and quantitative light. You might expect differences in the physiological responses of those who exercise. What other factors might influence the response time? As your group discussion proceeds, make notes below that summarize the group's knowledge and observations about what characteristics influence reaction time.

Asking Questions

Research starts by asking questions which are then refined into hypotheses. Review the group observations that you listed and write down scientifically answerable questions that your group has about reaction time in people with different characteristics. Be prepared to present your group's best questions to the class and to record the best questions from the class on a piece of paper.

Forming Hypotheses

With your group, review the questions posed in the class discussion. Examine the questions for their answerability. Do some lack focus? Are they too broad? Are others too simple, with obvious answers? By what criteria would you judge a good question?