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The cover photo shows a kettle drum with a dark pattern on it that is produced in
the following way: A powder such as fine sand is sprinkled on the drumhead, and
then the surface is vibrated by the transducer that can be seen in the upper left. If the
frequency of vibration is a natural frequency of the membrane, there are nodal curves—
curves and/or lines where the membrane is not moving. The powder collects on and
near these curves. Different natural frequencies produce different nodal curves. In the
background of the cover is another picture, where the nodal curve is a pair of crossed
lines at right angles. The ideas of membrane vibrations and nodal curves are developed
in Chapter 5, Section 5.7. See Figure 9 in that section and the associated animations on
the website.
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Preface

This text is designed for a one-semester or two-quarter course in partial differ-
ential equations given to third- and fourth-year students of engineering and
science. It can also be used as the basis for an introductory course for graduate
students. Mathematical prerequisites have been kept to a minimum—calculus
and differential equations. Vector calculus is used for only one derivation, and
necessary linear algebra is limited to determinants of order two. A reader needs
enough background in physics to follow the derivations of the heat and wave
equations.

The principal objective of the book is solving boundary value problems in-
volving partial differential equations. Separation of variables receives the great-
est attention because it is widely used in applications and because it provides
a uniform method for solving important cases of the heat, wave, and poten-
tial equations. One technique is not enough, of course. D’Alembert’s solution
of the wave equation is developed in parallel with the series solution, and
the distributed-source solution is constructed for the heat equation. In ad-
dition, there are chapters on Laplace transform techniques and on numerical
methods.

The second objective is to tie together the mathematics developed and the
student’s physical intuition. This is accomplished by deriving the mathematical
model in a number of cases, by using physical reasoning in the mathematical
development, by interpreting mathematical results in physical terms, and by
studying the heat, wave, and potential equations separately.

In the service of both objectives, there are many fully worked examples and
now about 900 exercises, including miscellaneous exercises at the end of each
chapter. The level of difficulty ranges from drill and verification of details
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to development of new material. Answers to odd-numbered exercises are in
the back of the book. An Instructor’s Manual is available with the answers
to the even-numbered problems. A Student Solutions Manual which contains
detailed solutions of odd-numbered problems can be found online at:
http://www.elsevierdirect.com/companions/9780123747198.

There are many ways of choosing and arranging topics from the book to
provide an interesting and meaningful course. The following sections form
the core, requiring at least 14 hours of lecture: Sections 1.1-1.3, 2.1-2.5, 3.1—
3.3, 4.1-4.3 and 4.5. These cover the basics of Fourier series and the solutions
of heat, wave, and potential equations in finite regions. My choice for the next
most important block of material is the Fourier integral and the solution of
problems on unbounded regions: Sections 1.9, 2.10-2.12, 3.6 and 4.4. These
require at least six more lectures.

The tastes of the instructor and the needs of the audience will govern the
choice of further material. A rather theoretical flavor results from including:
Sections 1.4-1.7 on convergence of Fourier series; Sections 2.7-2.9 on Sturm-
Liouville problems, and the sequel, Section 3.4; and the more difficult parts of
Chapter 5, Sections 5.5-5.10 on Bessel functions and Legendre polynomials.
On the other hand, inclusion of numerical methods in Sections 1.8, 3.5 and
Chapter 7 gives a very applied flavor.

Chapter 0 reviews solution techniques and theory of ordinary differential
equations and boundary value problems. Equilibrium forms of the heat and
wave equations are derived also. This material belongs in an elementary differ-
ential equations course and is strictly optional. However, many students have
either forgotten it or never seen it.

For this sixth edition, I have again made changes in response to students’
changing needs and abilities. Many sections have been edited to improve clar-
ity and make solution processes more explicit. Solving potential problems and
sketching solutions of the wave equation using d’Alembert’s solution get ad-
ditional attention. In several sections, exercises have been reorganized more
logically, old ones revised and new ones added. Many exercises are based on
research publications from areas as diverse as chemical, civil, environmen-
tal, electrical, mechanical and rehabilitation engineering, physics and finance.
I have noted that students’ interest is piqued by these real-world problems;
they tend to put in a lot of time and effort—and consequently gain greater
understanding—in attempting to solve them. To capitalize on this tendency,
the book provides over 30 “projects.” These are extended problems, most based
on research papers with real data, that require going beyond the text. No solu-
tions are provided for projects.

To accompany this edition, the publisher is maintaining a web site with aux-
iliary materials: animations of convergence of Fourier series; animations of
solutions of the heat and wave equations as well as ordinary initial value prob-
lems; color graphics of solutions of potential problems; additional exercises in
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a workbook style; review questions for each chapter. All files are readable with
just a browser and Adobe Reader.

I wish to acknowledge these contributors: Cindy Smith, who was the LaTeX
compositor and corrected many of my mistakes; Prof. Afshin Ghoreishi
of Weber State University and Prof. Scott Fulton of Clarkson University, who
provided lists of errata in previous editions; Prof. Joseph Skufca of Clarkson
University for classroom experiments that are the basis of two projects; T. Mark
Hightower of NASA Ames Research Center for another project; Academic Press
editors and consultants; and reviewers for this edition.

David L. Powers
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Ordinary Differential
Equations

0.1 Homogeneous Linear Equations

The subject of most of this book is partial differential equations: their physical
meaning, problems in which they appear, and their solutions. Our principal
solution technique will involve separating a partial differential equation into
ordinary differential equations. Therefore, we begin by reviewing some facts
about ordinary differential equations and their solutions.

We are interested mainly in linear differential equations of first and second
orders, as shown here:

% =k(t)u+ f(1), (1)
d*u du
Tz K@=+ p(u = f(1). (2)

In either equation, if f(t) is 0, the equation is homogeneous. (Another test: if
the constant function u(t) = 0 is a solution, the equation is homogeneous.)
In the rest of this section, we review homogeneous linear equations.

A. First-Order Equations

The most general first-order linear homogeneous equation has the form

du
— =k(t)u. (3)
dt
(© 2010 Elsevier, Inc. All rights reserved. 1
doi:10.1016/B978-0-12-374719-8.00001-3.
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This equation can be solved by isolating « on one side and then integrating:

1du
27—k
udt (#)
Cnful = /k(t)dt+C
u(t) — iecefk(f)(“ — Cefk(t)dr. (4)

It is easy to check directly that the last expression is a solution of the differential
equation for any value of c. That is, ¢ is an arbitrary constant and can be used
to satisfy an initial condition if one has been specified.

Example.
Solve the homogeneous differential equation

du ,
— = —tu.

dt
The procedure outlined here gives the general solution
u(t) = ce "2

for any c. If an initial condition such as u(0) = 5 is specified, then ¢ must be
chosen to satisfy it (c = 5). O

The most common case of this differential equation has k(¢) = k constant.
The differential equation and its general solution are

d
Y = ku, u(t) = ce*.

I (5)

If k is negative, then u(t) approaches 0 as t increases. If k is positive, then u(t)
increases rapidly in magnitude with ¢. This kind of exponential growth often
signals disaster in physical situations, as it cannot be sustained indefinitely.

B. Second-Order Equations

It is not possible to give a solution method for the general second-order linear
homogeneous equation,

d*u du
W+k(t)ﬁ+p(t)u—0. (6)

Nevertheless, we can solve some important cases that we detail in what follows.
The most important point in the general theory is the following.
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Principle of Superposition. If u,(t) and u,(t) are solutions of the same linear
homogeneous equation (6), then so is any linear combination of them:
u(t) = crun (1) + coua(t). O

This theorem, which is very easy to prove, merits the name of principle be-
cause it applies, with only superficial changes, to many other kinds of linear,
homogeneous equations. Later, we will be using the same principle on partial
differential equations. To be able to satisfy an unrestricted initial condition, we
need two linearly independent solutions of a second-order equation. Two so-
lutions are linearly independent on an interval if the only linear combination of
them (with constant coefficients) that is identically 0 is the combination with 0
for its coefficients. There is an alternative test: Two solutions of the same linear
homogeneous equation (6) are independent on an interval if and only if their

Wronskian
uy(t) us(t)

W) = ) wy e

(7)

is nonzero on that interval.

If we have two independent solutions u,(t), u,(t) of a linear second-order
homogeneous equation, then the linear combination u(t) = cju;(t) + couy(t)
is a general solution of the equation: given any initial conditions, ¢, and ¢, can
be chosen so that u(t) satisfies them.

1. Constant coefficients

The most important type of second-order linear differential equation that can
be solved in closed form is the one with constant coefficients,
Pk =0 tants) (8)
— +k—+pu= , p are constants).
dt? ar P ¥
There is always at least one solution of the form u(t) = ™ for an appropriate
constant m. To find m, substitute the proposed solution into the differential

equation, obtaining

2 mt mt
e

me™ + kme™ + pe™ =0,

or
m’ +km+p=0 (9)

(since e™" is never 0). This is called the characteristic equation of the differential
equation (8). There are three cases for the roots of the characteristic equation
(9), which determine the nature of the general solution of Eq. (8). These are
summarized in Table 1.

This method of assuming an exponential form for the solution works for
linear homogeneous equations of any order with constant coefficients. In all
cases, a pair of complex conjugate roots m = & % i leads to a pair of complex
solutions

emeiﬂt, eure—iﬂr (10)
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Roots of Characteristic General Solution of Differential
Equation Equation

Real, distinct: m, #m, u(t) = ce™" + ce™!

Real, double: m, = m, u(t) = ce™* +cyte™!?

Conjugate complex: u(t) = c,e* cos(Bt) + c,e*" sin(Bt)

m=a+if,m=a—1if

D a2 d _
Table 1 Solutions of 7.7 + k% + pu =10

which can be traded for the pair of real solutions
e*' cos(Bt), e“' sin(Bt). (11)

We include two important examples.

Example.
First, consider the differential equation
Pu 5
ﬁ +Au=0 (12)

where A is constant. The characteristic equation is m* + A> = 0, with roots
m = =i). The third case of Table 1 applies if A #0; the general solution of the
differential equation is

u(t) = cycos(At) + ¢, sin(At). (13)
U
Example.
Second, consider the similar differential equation
v,

The characteristic equation now is m* — A% = 0, with roots m = £A. If A #0,
the first case of Table 1 applies, and the general solution is

u(t) = cye™ + c e, (15)
It is sometimes helpful to write the solution in another form. The hyperbolic
sine and cosine are defined by

sinh(A) = % (e® —e ), cosh(A) = % (e +e7%). (16)

Thus, sinh(At) and cosh(At) are linear combinations of e* and e~*'. By the
Principle of Superposition, they too are solutions of Eq. (14). The Wronskian
test shows them to be independent. Therefore, we may equally well write

u(t) = ¢} cosh(rt) + ¢} sinh(At)

as the general solution of Eq. (14), where ¢| and ¢} are arbitrary constants.
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Figure 1 Mass-spring-damper system.
Example: Mass-spring-damper system.

The displacement of a mass in a mass-spring-damper system (Fig. 1) is de-
scribed by the initial value problem

d*u du
L L
dt2+ dt+a)u

du
u(0) = uo, E(O) = vp.

The equation is derived from Newton’s second law. Coefficients b and ?
are proportional to characteristic constants of the damper and the spring, re-
spectively. The characteristic equation of the differential equation is

m* +bm+w® =0

with roots

—b+ Vb2 — 4a? b b\*
2 =3 EV ) ¢

The nature of the solution, and therefore the motion of the mass, is determined
by the relation between b/2 and w.

b = 0: undamped. The roots are +iw and the general solution of the differen-
tial equation is

u(t) = ¢y cos(wt) + ¢, sin(wt).

The mass oscillates forever.
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0 < b/2 < w: under-damped. The roots are complex conjugates o + i
with o« = —b/2, B = Jw? — (b/2). The general solution of the differential

equation is
u(t) = e "% (¢, cos(Bt) + c3 sin(Bt)) .

The mass oscillates, but approaches equilibrium as ¢ increases.

b/2 = w: critically damped. The roots are both equal to b/2. The general
solution of the differential equation is

u(t) = e P%(c, + cat).

The mass approaches equilibrium as ¢ increases and may pass through equi-
librium (u(t) may change sign) at most once.

b/2 > w: over-damped. Both roots of the characteristic equation are real
and negative, say m, and m,. The general solution of the differential equation
is

myt

u(t) = cre™" + ce™*.

The mass approaches equilibrium as ¢ increases and u(t) may change sign at
most once. These cases are illustrated on the website. O

2. Cauchy-Euler equation

One of the few equations with variable coefficients that can be solved in com-
plete generality is the Cauchy-Euler equation:

tzdzu +ktdu + 0 (17)
— — + pu=0.
dt? ar P
The distinguishing feature of this equation is that the coefficient of the nth
derivative is the nth power of t, multiplied by a constant. The style of solution
for this equation is quite similar to the preceding: assume that a solution has
the form u(¢) = t™, then find m. Substituting u in this form into Eq. (17) leads
to

t*m(m — )t" 2 + ktmt™ ' + pt™ =0, or

m(m—1)+km+p=0 (k, p are constants). (18)

This is the characteristic equation for Eq. (17), and the nature of its roots de-
termines the solution as summarized in Table 2.

Example.
One important example of the Cauchy-Euler equation is
pdt A ey (19)
[—— _— u =
a2 dt

where A > 0. The characteristic equation is m(m —1)+m—A? = m> — A% = 0.
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Roots of Characteristic General Solution of Differential
Polynomial Equation
Real, distinct roots: m; #m,  u(t) = ¢, t™ + c,t"™
Real, double root: m1; = m; u(t) = c t"™ + c(Int)t™
Conjugate complex roots: u(t) = c;t*cos(BInt) + c,t* sin(BInt)
m=a+if,m=o—if

Table 2 Solutions of tz% + kt‘;—‘t‘ +pu=0

The roots are m = %A, so the first case of Table 2 applies, and

u(t) =t + ot (20)
is the general solution of Eq. (19). g

For the general linear equation

d*u du

— +k(t)— + p(t)u =0,

dr? ( )dt p(®)

any point where k(t) or p(t) fails to be continuous is a singular point of the
differential equation. At such a point, solutions may break down in various
ways. However, if # is a singular point where both of the functions

(t — to)k(t) and (t — to)*p(t) (21)

have Taylor series expansions, then f, is called a regular singular point. The
Cauchy-Euler equation is an example of an important differential equation
having a regular singular point (at f, = 0). The behavior of its solution near
that point provides a model for more general equations.

3. Other equations

Other second-order equations may be solved by power series, by change
of variable to a kind already solved, or by sheer luck. For example, the

equation
2

d*u

4 2
' —+Au=0, 22
In (22)

which occurs in the theory of beams, can be solved by the change of
variables

t=-—, u(t) = 1v(z).
z z

Here are the details. The second derivative of u has to be replaced by its ex-
pression in terms of v, using the chain rule. Start by finding

@_d v dz
dt  dz\z) dt
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Since t = 1/z, also z = 1/t,and dz/dt = —1/t* = —z*. Thus

du , {2V —v ,
=—z =—zv + .

dt 2

Similarly we find the second derivative

d>u d (du\dz d ) 2
—=— | — )= = —(—zv +v)(-2%)
dt?  dz \dt ) dt dz

= —Z(=zv" =V +V) =20,

Finally, replace both terms of the differential equation:

or
v’ + A% = 0.

This equation is easily solved, and the solution of the original is then found by

reversing the change of variables:

u(t) = t(cy cos(r/t) + cysin(r/t)). (23)

C. Second Independent Solution

Although it is not generally possible to solve a second-order linear homoge-
neous equation with variable coefficients, we can always find a second inde-
pendent solution if one solution is known. This method is called reduction of
order.

Suppose u;(t) is a solution of the general equation

d*u du
dr? dt
Assume that u,(t) = v(t)u;(¢) is a solution. We wish to find v(t) so that u,
is indeed a solution. However, v(t) must not be constant, as that would not

supply an independent solution. A straightforward substitution of u;, = vu,
into the differential equation leads to

+ p(H)u =0. (24)

v"uy 4 20wl + vul + k(6)(V'uy + vu)) + p(t)vu; = 0.
Now collect terms in the derivatives of v. The preceding equation becomes
v + 2u) + k()u)v" + (u] + k(t)u] + p(H)uy)v = 0.
However, u, is a solution of Eq. (24), so the coefficient of v is 0. This leaves
uv” + 2u) + k(H)u))v' =0, (25)

which is a first-order linear equation for v'. Thus, a nonconstant v can be
found, at least in terms of some integrals.



