KING PASCAL - SPEAKING PASCAL - SPEAKING PASCAL - SPE!/

SCAL SPEAKING PASCAL + SPEAKING PASCAL : SPEAKING F

éKING PASCAL - SPEAKING PASCAL 1 SPEAKING PASCAL - SPE/
lma[mg pafca[)

- A Computer Language Primef

%ASCAL SPEAKING PASCAL - SPEAKING PASCAL - SPEAKING F

AKING PASCAL - SPEAKING PASCAL - SPEAKING PASCAL - SPE/

;F_?ASCAL - SPEAKING PASCAL - SPEAKING PASCAL - SPEAKING |

;\KING PASCAL - SPEAKING PASCAL - SPEAKING PASCAL - SPE/

- SPEAKING PASCAL - SPEAKING PASCAL -+ SPEAKING |

ASCAL - SPEAKING PASCAL - SPEAKING PASCAL - SPE/

SPEAKING PASCAL

Kenneth A. Bowen
Syracuse University

H

HAYDEN BOOK COMPANY, INC.

Rochelle Park, New Jersey

For Alexandra
and Melissa

Library of Congress Cataloging in Publication Data

Bowen, Kenneth A.
Speaking Pascal.

Bibliography: p.

Includes index.

1. PASCAL (Computer program language) I. Title.
QAT6.T3.P2B66 001.64'2kL 81-5390
ISBN 0-8104-5164-6 AACR?

Copyright © 1981 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor-
mation storage and retrieval system, without permission in writing from

the Publisher.
Printed in the United States of America

2 3 4 5 6 7 8 9 PRINTING

81 82 83 84 85 86 87 88 89 YEAR

SPEAKING PASCAL

Learning to program should be fun! This book makes learning to
program in the language Pascal a pleasant experience. It is designed
for beginners with no previous programming experience. The pace and
approach are slow and careful, yet light-hearted and enjoyable. There
are many carefully chosen examples which are used to motivate and
illustrate the important ideas. These examples are chosen to reflect
concerns from everyday life, such as diagnosing and treating winter
colds, or choosing breakfast from a menu. Thus they are immediately
meaningful and interesting to everyone. In this way, learning the
fundamental ideas of Pascal becomes a pleasant task.

While presenting the elements of the particular programming
language Pascal, I have tried to convey an understanding and apprecia-
tion of the top-down, structured approach to program design and
construction. All of the principal examples are carefully developed
with these methods. Experience has shown this approach to be the
most reliable method of producing correct and understandable programs.

The version of Pascal presented is extremely close to the
international standard for Pascal, and thus is widely available on many
computers. The few deviations from the proposed standard are noted
in the text. The version presented covers all the important constructs
used in everyday programming. These are widely available on every
computer which supports Pascal at all, and include ‘procedures and
functions, arrays, records, enumeration types, iteration and control, and
input-output. A few constructs which are not widely used in everyday
programming have been omitted.

This book has grown out of my experiences teaching Pascal and
other programming languages at Syracuse University. To my colleagues
at the School of Computer and Information Science | am indebted for

many fruitful conversations over the years, and in particular to
Lockwood Morris, with whom I first learned Pascal as we jointly taught
the first course in this language at Syracuse.

To Henry Ledgard, | owe a very special thanks. As my editor, he
has been both a wonderful source of ideas and a vigilant critic. In
particular, he suggested that I transfer the top-down approach to the
design and execution of the book itself, and was a great aid in actually
accomplishing this. The contribution of Randall Bond, fine arts librarian
at Syracuse, is immediately evident: he led me to the sources of the
lovely illustrations in the text. Betsy Clarke helped with both the typing
and final production — to her, many thanks.

And last, but far from least, | owe tremendous gratitude to my wife
and daughters for their support and forbearance during the writing of this
book.

Kenneth A. Bowen
Syracuse, New York
April, 1981

Contents

Preface \Y

First Words

Chapter 1 Talking to Computers: Introduction 1
1.1 A Program to Read Aloud 2
1.2 Your Conversational Partner 5
1.3 Behind the Conversation 8

Simple Conversations

Chapter 2 Money Talk: Integer Expressions 11
2.1 Striking Up a Conversation 12
2.2 YOur RESPONSE :vussamsumas tws cws $95 25 3w mmswms sas s 14
2.3 Program SIIUCHITE ::wsmws ems cns sms ems snmsmpsnms susan 21
2.4 Comments and Documentation 31

Chapter 3 But There’s Much More to Talk About:

Real Numbers, Characters, and Other Things 34
3.1 Taking the World's Measure 35
3.2 Messages and Codes 42
3.3 Other Things 45

Controlling the Conversation

Chapter 4 Repetitive Conversations: Iteration 52

4.1 Limited Repetition 53
4.2 Going on Forever 59

Chapter 5 Consultation and Diagnosis: Conditionals 67

5.1 Decisions, Decisionsco. .. 68
5.2 Multiple Alternatives 75
Chapter 6 Recording Conversations: I-O and Files 81
6.1 Recording Devices i 82
6.2 Organizing Your Files 83
6.3 Formatted I-O 94

Sophisticated Conversations

Chapter 7 Table Talk: Arrayscccccouuiiei... 98
7z LISting YOUF POINES ., .o gl o:cus sws sms sms swsimnanss 99
7.2 Speaking Literally - -« - tiveiennnnn.. 107
7.3 Expanding Your Horizons 117
Chapter 8 Steering the Conversation:
Procedures and Functions 122
8.1 Navigating the Shoals of Complexity 123
8.2 Packaged Conversations 130
8.3 Telling Them What They Need to Know 145
Chapter 9 Talented Talk: Records 158
9.1 Picturing the World 159
9.2 Filing the Pictures 162
Last Words

Chapter 10 Elegant Discourse: Program Design Methodology ... 177

10.1 Top Down Design 178

10.2 Pretty COMMEntS .: cums sms s smsmcans sos 601 sms 083 80 3 179
Appendix A Pascal at a Glance 216
Appendix B Reserved Words for Pascal 221
Appendix C Intrinsic Functions and Procedures 222
Appendix D Character Code Tables 227
Appendix E UCSD Pascal .:....os 005 vasssnssnsons sws ams sma s 230

Chapter One

Talking to Computers: Introduction

In the 35 odd years of their existence, electronic computers have
undergone a remarkable growth and development that still continues
today. The early legendary machines such as the ENIAC, the IAS
computer, and the UNIVAC | were behemoth arrays of thousands of
vacuum tubes that occupied large rooms, constantly broke down, and
cost hundreds of thousands of dollars. Today far more powerful
machines built out of miniaturized transistors occupy no more space
than a typewriter, run reliably for years, and can be bought for less
than $1,000 at retail stores throughout the United States. Despite this
dramatic development, these modern machines are conceptually quite
similar to their early counterparts. Both are sophisticated machines for
manipulating electronic representations of data at incredibly high
speeds. And both must be told explicitly what to do in these
manipulations.

2 Chapter One

Popular myths to the contrary, computers themselves are not at
all intelligent. They can no more think through solutions of problems
on their own than a semi-trailer truck is capable of driving itself from
New York to Los Angeles. In both cases, intelligent human guidance is
needed. In the case of the semi-trailer truck, the human operator is
always present, directing the actions of the truck at each moment. In
the case of the computer, the human operator generally prepares a set
of instructions (a program) for the machine in advance, and the com-
puter follows these instructions as it goes about the manipulations to
compute a solution to the problem at hand. In each case the
intelligence is human; the expenditure of effort is mechanical or
electronic.

The actual instructions that a computer is prepared to accept and
execute are extremely primitive. Consequently the preparation of
programs using these actual machine instructions is not only tedious
and difficult, but also highly error-prone. This difficulty has led to the
development of methods for controlling computers which use in-
structions that are more suitable for human use. These methods are
generally termed higher-order lanaguages for computer programming.

The number and diversity of these languages is bewildering. A
fragmentary list of some of the better-known languages includes
ALGOL, APL, BASIC, COBOL, FORTRAN, JOVIAL, LISP, LOGO, Pascal,
PL/I, PROLOG, SAIL, and SNOBOL. These various programming lan-
guages have been designed with differing goals. Some are intended to
be general-purpose, while others are intended to be more suitable for
business data processing, scientific numerical calculation, research in
artificial intelligence, text processing, and so forth. In this book we will
study the programming language Pascal. This is a modern, general-
purpose programming language. Its design has benefited from ex-
periences with earlier programming languages and is oriented towards
so-called structured programming methods. At the present time Pascal
is regarded as a paradigm among programming languages. As such, it
has become widely available on most computers.

1.1 A Program to Read Aloud

One of the intents of the designer of Pascal (Nicklaus Wirth) was
to produce a computer language that was easy to learn. He succeeded
at this, and one of the consequences of his success is that Pascal
makes possible the writing of programs that are clear and easy to
understand. To illustrate his success in doing this, consider Program 1-
1. Its purpose is to set up a small dialogue between the computer and
the user at the terminal. The computer will ask the user for the time of

Talking to Computers 3

pro
(*

*

*
*
%

gram TIMEOFDAY(INPUT,OQUTPUT);

This program accepts as input a so-called military

time specification, such as 0745 or 2130, and outputs the *

corresponding time in the usual am/pm format.

var
MILTIME, HOURS, MINS: INTEGER;

begin

WRITE('Please type the time in military format: ');

READ(MILTIME);

HOURS :
MINS

MILTIME div 100;
MILTIME mod 100;

WRITE('The time at the tone is: ');

if (HOURS = 0) and (MINS = 0) then
WRITE(' MIDNIGHT')

else if HOURS < 1 then
WRITE('12:, MINS, 'a.m.')

else if HOURS < 12 then
WRITE(HOURS, ':', MINS, 'a.m.')

else if (HOURS = 12) and (MINS = 0) then
WRITE(' NOON')

else if (HOURS = 12) and (MINS > 0) then

WRITE(HOURS, ':', MINS, 'p.m.")
else
WRITE((HOURS - 12), ':', MINS, 'p.m.');

end.

Program 1-1 A Simple Program to Compute the Time of Day.

00~ D U B w N

W W W W W NN NN NN NRNRNRN = = e e e e e
W N — O WO N U &WNF—~HOWOoNOO O e WN — O w

4 Chapter One

day expressed in the 24-hour or “military” format. The user supplies it,
and the computer responds with the time expressed in the common
a.m./p.m. format.

Though we have not yet studied the details of Pascal, it is
possible to read this program (aloud) and follow its operation.

The first line simply identifies the start of the program. The next
five lines, from the opening (* to the closing *) are a comment, which
has no effect on the machine but simply describes the action of the
program for the benefit of human readers. Then in lines 8 and 9 there
occurs a variable declaration. This simply asserts that we intend to
use the words MILTIME, HOURS, MINS as names of “containers’ or
variables for holding integers. The action part of the program starts in
line 11. (Line numbers are present in this program for reference only.
Normally Pascal programs do not contain line numbers.)

The first action is to write out the following message on the
terminal:

Please type the time in military format

The next action (in line 14) is to read in the integer typed on the
terminal by the user and store it in the variable or container called
MILTIME. Then the hours in this military time are obtained by dividing
the value of MILTIME by 100 and obtaining the integer quotient. The
result is stored in the variable HOURS. The remaining minutes in
MILTIME are obtained (in line 17) as the remainder when the value in
MILTIME is divided by 100. This result is stored in the variable MINS.
Next the message

The time at the tone is

is printed out on the terminal (and no new line is started).
Finally, beginning at line 21, the program must make a decision
as to what to print out for the time. It proceeds as follows:

1. If both HOURS and MINS contain value 0, the time must be
midnight, and so it prints this.

2. However, if either the value in HOURS is not 0 or the value
in MINS is not 0, but the value in HOURS is less than 12, it
must be morning; and so the program prints out the value
in HOURS followed by a colon (@), in turn followed by the
value in MINS, and finally the expression 'a.m.'.

3. Now, if the value in HOURS is precisely 12 and the value in
MINS is 0, it must be noon and the program prints this.

4. But if the value in HOURS is still 12 and the value in MINS
is not 0, it must be between noon and 1 p.m.; and so the

Talking to Computers 5

program prints out 12 followed by a colon followed by the
value in MINS, which is finally followed by the expression
'p.m.'.

5. In the final case, the value in HOURS must be greater than
12. Therefore, we must correct it by subtracting 12 from it.
The program does this as it prints out the time.

Notice how much English it took to explicate the simple Pascal text for
this decision. Yet the English is no clearer! We will find this quite
often to be true: if we know precisely what we wish to do, it is often
easier to say it in Pascal than in English.

1.2 Your Conversational Partner

Just as it is possible to operate a car or truck with no knowledge
of its inner mechanical workings, it is possible to program and operate
computers with no knowledge of their inner electronic workings. But a
vehicle can be driven more effectively and efficiently if one possesses
some knowledge of its inner design. Moreover, this knowledge be-
comes even more valuable in dealing with the inevitable minor
malfunctions and difficulties that can arise during a trip.

The same is true for computers. The person who has some
knowledge of the inner construction of computers can design more
efficient and effective programs, as well as deal more effectively with
the problems (“bugs”) which seem to inevitably arise in programming.
This knowledge need not be at the level of the engineering and
physical details of the machine’s function, but rather at the logical or
conceptual level.

Viewed quite simplistically, a computer can be seen as a device
that accepts certain data as input and gives forth other data as output,
as indicated in Figure 1-1.

INPUT s COMPUTER == QUTPUT

A1

Figure 1-1. The Computer as a Black Box.

6 Chapter One

However, to use the machine effectively, we will need to look
inside it a bit. If we begin breaking down the logical structure of a
computer, we discover that it has the following requirements:

B There must be devices for inputting both data and instruc-
tions to the machine and for outputting the results of its
computations. These are collectively known as input-output
devices, or I-O for short.

B There must be a central processor that interprets the
instructions and carries out the arithmetic and logical
computations.

® There must be a memory in which both data and instruc-
tions can be stored and retrieved by the central processor.

Our diagram of the computer might now appear as in Figure 1-2.

< CENTRAL -
—] PROCESSOR —_—

Figure 1-2. Elementary Computer Structure.

To fully grasp some of what follows, we will need to break this
diagram down a bit further. First we note that there exist a variety of
input-output devices, some of which can do both input and output,
and others that are strictly limited to one function or the other. Both
the teletype (which for our purposes includes Decwriters, IBM 2741
terminals, and so forth) and the graphics display terminal, as well as
punched paper tape, can do both input and output. On the other hand,
the card reader can only input data, while the card punch, high-speed
line printer, and plotter can only output data.

Computers also have several types of memory. The fastest memory,
in the sense that data can be entered into it and recopied from it faster
than in any other type, is known as primary storage memory. This is
the memory unit used directly by the central processor. (It is sometimes

Talking to Computers 7

called core memory, reflecting the fact that in many of the early
large-scale machines this memory was made up of many small magnetic
iron “cores.”) Unfortunately, primary memory units are very expensive
and tend to be bulky relative to the amount of information they can
store. Hence large-scale machines make use of several other slower,
but more economical and compact, memory units. The first of these is
the magnetic disk, which is the fastest memory after primary memory.
These disks resemble large phonograph records that have been coated
on both sides with a brown magnetic substance similar to that used on
ordinary magnetic tape. Next in order of memory speed comes
magnetic tape itself. And last of all is the ubiquitous punched card.
Recently, magnetic tape in the form of cassettes has also come into
use, especially with smaller computer systems.

Our logical diagram of a large computer might now appear as in
Figure 1-3.

\// S/

CARD p— CENTRAL —
READER — | PROCESSOR —r
CARD LINE
PUNCH PRINTER

Figure 1-3. Logical Structure of a Computer.

The input-output devices indicated simply form the basic comple-
ment for a general-purpose installation. In special-purpose installations,

8 Chapter One

sensors and control motors are added. By means of these additions,
computers can be used to monitor and control industrial and manufac-
turing processes, direct environmental control in buildings and homes,
and run games and toys.

As we indicated, in such a computer we store not only numbers
and other data in the memory but also the instructions for a computa-
tion. Thus the machine is able to obtain and read its instructions just
as fast as it can obtain its data. The question obviously arises as to
what form we can imagine the data and instructions to take when they
are stored in memory. Are they represented in a form resembling our
ordinary ways of writing or in some other manner? Unfortunately for
the beginning student, the form in which they appear in memory is
quite different from our ordinary representations. In fact, one can say
that all of the items — numbers, other data, and instructions — are
represented in a language whose only symbols are the digits 0 and 1.
This apparently bizarre state of affairs is caused by engineering
limitations in the construction of computers. Needless to say, program-
ming in “machine language” is tedious in the extreme.

The central processing unit has capabilities for manipulating the
words of this machine language. Among some of its capabilities are
the following:

®m Comparing two words to see if they are equal

@ Taking two words that represent numbers and adding,
subtracting, multiplying, or dividing them to produce the
word representing the sum, difference, product, or quotient,
respectively.

m Taking a word representing a letter or digit and causing the
letter or digit to be output, say on a teletype.

@ Sensing that a key has been typed on a teletype, and
obtaining the word representing the character on the key.

These capabilities are really quite primitive. The power of compu-
ters arises from their ability to perform such operations over and over
at incredibly high speeds (thousands or millions of operations per
second). High-level languages such as Pascal provide the capability to
control such runaway speed and power without the tedium and
difficulty of machine-language programming:

1.3 Behind the Conversation

When the statements of a higher level programming language
such as Pascal are typed in or read in from the punched card reader,

Talking to Computers 9

they are automatically coded into a form that the machine can
manipulate.

Though the higher level statements are in a binary code, the
coded form usually is not in the form of a machine-language instruction;
often, from the computer's point of view, the coded form is just
gibberish. So the second stage of the translation procedure involves
the translation of these coded statements into instructions intelligible
by the machine. This second stage translation is not physically built
into the machine, but is accomplished by a complex program called
an interpreter or compiler. Each higher level programming language
has its own interpreter, compiler, or both.

The difference between an interpreter and a compiler lies in their
approach to the translation of the statements of the higher order
language. Roughly, an interpreter reads each individual statement or
command of the program and immediately translates and executes it,
while a compiler translates the entire program before actual execution
begins. There are advantages and disadvantages to each approach. In
general, once a compiler has finished the total translation of a
program, the actual execution speed of this compiled program is faster
than that of the same original (source) program executed by an
interpreter. Moreover, the amount of memory occupied by the compiled
program is much less than the combined space occupied by the
source program together with the interpreter program. Since main
memory is a scarce and expensive commodity, this is a serious
consideration. On the other hand, compilers as programs themselves
are usually much larger and more complex than interpreter programs;
they can be so big as to be impossible to fit in the memory of a
microcomputer. Moreover, when the source program contains errors
(bugs), it is often much easier to diagnose these errors with the
assistance of an interpreter than with a compiler.

You will recall that an interpreter or a compiler for a higher level
language is itself just a computer program. This program, which is the
interpreter or compiler, is called an implementation of the higher level
language. Since it is usually a program for a particular kind of
computer, it is called an implementation of the higher level language
on that computer. For example, one speaks of implementations of
Pascal on IBM 370 computers, on CDC 6600 computers, and so forth.

Some languages (such as LISP) are implemented using both
compilers and interpreters. Some (such as BASIC and LOGO) primarily
use interpreters, and others (including Pascal) primarily use compilers.
Pascal has been implemented on most mainframe and minicomputers
available today, as well as on a wide range of microcomputers. All of
these implementations differ in one degree or another. The fine details
of these differences are usually not of concern and can be determined
by consulting the appropriate computer's manuals.

