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Pi'eface

This book contains the invited papers of the interdisciplinary workshop on
"Stochastic Nonlinear Systems.in Physics, Chemistry and Biology" held at the Center
for Interdisciplinary Research (ZIF) University of Bielefeld, West Germany, October
5-11, 1980. :

The workshop brought some 25 physicists, chemists, and biologists - who deal
with stochastic phenomena - and about an equal number of mathematicians - who are
experts in the theory of stochastic processes - together.

' ‘The Scientific Commitee consisted of L. Arnold (Bremen), A. Dress (Bielefeld),
W. Horsthemke (Brussels), T. Kurtz (Madison), R. Lefever (Brussels) G. Nicolis
(Brussels), and V. Wihstutz (Bremen).

The main topics of the workshop were the transition from deterministic to stoch-
astic behavior, -external noise and noise induced transitions, internal fluctuations,
phase transitions, and irreversible thermodynamics, and on the mathematical side,
approximation of stochastic processes, qualitative theory of stochastic systems,
and space-time processes.

The workshop was sponsored by ZIF, B1e1efeld and by the Un1vers1t1gs of Bremen _-
and Brussels. We would like to thank the staff of ZIF and H. Crauel and’ ‘M. Ehrhardt
(Bremen) for the perfect organization and their assistance. In addition.‘ouf

“thanks go to Proféssor H. Haken for having these Proceedings included in the Se-

ries in Synergetics.

Bremen and Brussels - L. Arnold and R. Lefever
December 1980 '
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On the Foundations of Kinetic Theory

B. Misra and I. Prigogine

Chimie-Physique II, C.P. 231, Université Libre de Bruxelles,
B-1050 Bruxelles, Belgium

Abstract

We discuss the problem of deriving an exact Markovian master equation from dynamics
without fesorting %0 approximation schemes such as the weak coupling limit, Boltz-
mann-Grad 1imit, etc. Mathé%atically, it is the problem of the existence of a suit-
“able positivity preserving operator A such that the unitary group Ut induced from
dynamics satisfies the intertwining relation

DA =WEA o, 20

with the contraction semigroup Nt of a strongly irreversible stochastic Markov
process. Two cases are of special interest: i) A = P is a projection operator,

ii) A has a densely defined inverse. Qur recent work, which we summarize here, shows
that the class of (classical) dynamical systems for which a suitable projection
operator satisfying the above intertwining relation exists is identical with the
class of K flows or K systems. As a corollary of our consideration it follows that
the function | Py 1n 6tdu with bt denoting the coarse-grained distribution with
respect to & K partition obtained from Py = Utp is a Boltzmann-type H function for
K flows. This is not in contradiction with the time-reversal (velocity-inversion)
symmetry of dynamical evolution as the suitably constructed projection operator or
the A transformation are dynamics dependent and break the time reversal.

1. Introduction

The study of the possible connections that may exist between deterministic dyna-
mics and probabilistic processes is of obvious importance for the foundation of
nonequilibrium statistical mechanics. As it is well known, stochastic Markov pro-
cesses provide suitable models to represent irreversible evolution admitting a
Liapounov functional or H function. The important question, thus, is how the passage
from deterministic dynamics to probabilistic Markov processes is to be achieved.

Our work described below shows that in the presence of suitable instability of
motion, described by the condition of K flow, the dynamical evolution indeed

2



becomes similar in a well-defined sense to the stochastic evolution of a Markov
process. ,

Let us recall that the procedure for obtaining a Markovian master equation from
dynamics vsually starts with an initial "contraction of description". or coarse
graining brought about by a projection operator P. The operation of “coarse grain-
ing" alone, however, generally leads to the so-called generalized master equation
which is non-Markovian in character [1]. To obtain a Markovian evb]ution equation
one needs to consider a special asymptotic limit (e.g., the weak coupling limit etc.).
Thus, even when this program succeeds, the resulting master equation is only an ap-
proximation. To lay a more satisfactory foundation of nonequilibrium statistical
mechanics it seems desirable to investigate the possibility of establishing exact
Markovian master equations whose validity does not depend on sepcial approximation
schemes. This paper summarizes our receht work _in this direction [2-6]. We shall
discuss the prob]em for classical dynamical systems. Our main result is that the
class of dynamical systems for which an exact Markovian master equation follows from
a suitable projection operation alone is not empty, but is precisely the class of
. so-called K flow. The condition of K flow is thus seen to play the same role in the
foundation of nonequilibrium statistical mechanics as that of ergodicity in the
foundation of equilibrium statistical mechanics. ‘

Let us, however, mention that just as the method of replacing time average by
ensemble average can be justified for a special class of functions on phase space
even if the system as a ghoTe is not ergodic, one may be able to derive a'ex;ct
Markovian master equation for special subclass of initial distributions even if the
system is not a K flow. But it is only for K flows that one can derive an exact
mastgr eq7ation through a projection operator for all initial distribution functions
in LlJ r\Lu.

2. Formulation of the Problem

Consider an abstract dynamical system (r,B,u,Tt). Here T denotes the phase space of Ty
the system equipbed»with a o algebra of measurable subsets, Tt a group of measurable
transformations mapping T onto itself and preserving the measure p. For example,

I could be the energy surface of a classical dynamical system, Tt the group of dy-
namical evolution and u the invariant measure whose existence is assured by Liou-
ville's theorem. For convenience we shall assume the measure p to be normalized:

(1) = 1. As is well known, the evolution p - p, of density functions under the

given deterministic dynamics is described by the unitary group Ut induced by Tt

pyle) = (Vepd(w) = (T o) .

N\



The: generator-L of the.unitary group Ut is called the Liouvillian operator of the
system: Ug = exp(-itL). It is given by Poisson bracket with the Hamiltonian H:

Lo = itH,plp g,

for Hamiltonian evolution.

On the other hand, stochastic Markov processes on the state space I, preserv-
ing 4, are associated with contraction semigroups of LS 8 . In fact, let P(t,w,A)
denote the probability of transition from the point w €r to the region a in time
t. Then the\operators Nt_defined by )

(WeF)(0) = | Flo' )Pt urdo’)

form a contraction semigroup for t 2 0. Moreover, Nt has the following properties:
i) W, preserves positivity (i.e., f 2 0 implies W,f20fortz 0),
ii) W, 1=t .

The evolution of the distribution functions § under the Markov process is de-
scribed now by the ajoint semigroup N{ which also preserves positivity since Nt does:
bp > b = w;ao. Since the measure y is an invariant measure for the process (‘or
equivalently the microcanonical distribution function 1 is the equilibrium state of
the process) we also have

Ciiy uw _
iii) Nt o1 =1,

Every Markov process on I' with stationary measure y is thus associated with a con-

traction semigroup satisfying the conditions i-iii). Conversely, every contraction

semigreup Nt on I' satisfying the above conditions comes from a stochastic Markov
process, the transition probabilities P(t,w,A) being given by

P(t,w,A) = (wtq’A)(m) .

Here ¢, denotes the characteristic (or indicator) function of the set a.

In the following we are interested in:a special class of Markov processes whose
semigroups-wt satisfy [in addition to conditions i-iii)] the condition:

iv) || Wio - 1||2 decreases strictly monotonically to 0 as t + + =; for all states
p =1 (i.e., for all nonnegative distribution functions with jp dy = 1). This con-
dition expresses the requirement tQat any initial distribution p tends strictly mo-
notonically in time to the equilibrium distribution 1. For such processes the func-
tional :

[p by Yog bedu o by = Wi,

and indeed any other convex functiona1 of ﬁt is an H function. Such Markov processes
thus provide the best possible model of irreversible evolution obeying the law of
monotonic increase of entropy. Semigroups satisfying the conditions i-iv) will be
called strongly irreversible Markov semigroups.



The problem before us is to determine the class of dynamical systems for which
one can construct a bounded operator A hav1ng the following properties

i) Apreserve positivity,
ii) A =1 -
iij) [Apdu=fopdu
r r

iv) The dynamical group Ut = exp(-itL) satisfies the intertwining relation:
Mg = N{A (for t = 0) with a strongly irreversible Markov semigroup wt.

We shall consider two cases:

First, A has a densely defined inverse A-’. In this case A may be interpreted
as defining a "change of representation" of dynamics ey = Utp0 > Moy = By Con-
dition iv) then-means that the evolution of transformed states obeys the master
equation of the Markov process Wt. For dynamical systems admitting an invertible
operator A satisfying conditions i- -iv), the dynamical group Ui is similar to a
strongly irreversible Markov semigroup AUtA gL N{ for t 2 0. -

Note that the demanded invertibility of A assures that the passage p +~ Ap = §
involves no "loss of information". Dynamical systems admitting such a A may, hence,
be said to be intrinsieally random.

The other case we consider is: A is a projection operator P. Such proaect\on
operators li.e., projections P satisfying conditions i-iii), with A replaced by P]
correspond to operations of “coarse graining®. The existence of such a projection
P satisfying the intertwinning relation iv) thus implies an exact Markov1an master
equation for the system which does not depend on spec1al approx1mat1on schemes, but
results solely from the projection operator P. .

As described below, it is a remarkable fact that there is a rather general class
of dynamical systems for which an exact master equation holds 1n this sense.

y

3. Dynarﬁical Systems Admitting Exact Markoyian Master Equatjons

A K flow is, by definition 9], an abstract dynamical system (r,B,u,T t) for which
there exists a distinguished (measurable) partition EO of the phase space into dis-
Jo1nt cells having the following propert1es

i)e, =Tggzg if tas .

Here Tt50»=c€t is the partition into which the original partition ) is transformed
in time under the dynamical evolution. The notation £, z &£ signifies that the -
partition_gt is "finer" than £g (i.e., every cell of ¢ is entirely contained in
one of the cells of £).

ii) The (least fine) partition V  which is finer than each gy, ~=<t<+e
t=-=
is the partition of the phase space into distinct phase points.



iii) The (finest) partition ggf@ which is less fine than Qvery fg-wm<t<ctw
is a trivial partition consisting of a cell of measure 1.

A partition &0 with the above-stated properties is called a K partition. Many
systems of physical interest have been recently found to be K flows, for instance,
the motion of hard spheres within a finite box (101, ‘%the geodesic flow on space of
constant negative curvature [11], the Lorentz gas, and infinite ideal gas and hard
rod systems, etc. Generally, a K partition consists of an uncountable number of
cells, each of null y measure. The notion of coarse graining with respect to a
K partition cannot, therefore, be defined directly as the operation of taking
averages over the cells of the partition. The appropriate extension of the usual
concept of coarse graining is provided by the projection operator P0 of Lzu onto the
subspace L2[a(50){gi. Here a(go) denotes the o subalgebra of B consisting of only
those measurable subsets of I that are unions of cells in £g and tzfa(go),u] is the
subspace of all fe Lzu that are measurable with respect to a(g ). In fact, it is
clear that for any nonnegative density function p the funct1on Pge has the follow-
ing characteristic properties of coarse graining distribution with respect to the
partition

1) P0°=620) ) '

ii) I pdy = I pdu , ' o
iii) ﬁ being measurab]e with respect to a(go), can only assume constant values on
individual cells of g, ( b

iv) [edi=[pau <o .
for any measurable A that is a union of cells in &g

The (self-adjoint) projection gperation P0 of coarse graining with respect to a
partition ) obviously preserves positivity and maps the constant function (micro-
canonical ensemble) onto itself. It is interesting that- the converse is also true.
For standard measure spaces (I',B,p) with p(r) = 1 every self- -adjoint projection
operation P of L2u that preserves positivity and maps the constant function onto
itself is the projection operator onto Lz[a(g),u] for some measurable partition ¢ .
of I'. The operations of coarse graining may thus be identified with (self-adjoint)
projection operators P satisfying '

i) fz0=PFz0 and
ii) P1=1.

The following theorem tells that the condition of K flow is both necessary and
sufficient for the existence of an operation of coarse graining that converts the
dynamical evolution into that of a strongly irreversible stochastic Markov process.



4., Theorem 1

Suppose a dynamical system with induced unitary group Ut of dynamical evolution
admits a positivity preserving projection P mapping the unit function 1 to itself
such that

1) PUp =PUp'  for all t=p=p" , and
A1) PU = WP for tz 0,

where W, is a strongly irreversible Markov semigroup (see Sect.2 for definition).
f.Then'theidynamical system is necessarily a K flow. Conversely, ever K flow admits

a positivity preserving projection {namely, the projection onto Lzla(go),u] with
&g denoting a K partition} satisfying the conditions i) and ii) above.

Remark: Condition i) means that the coarse graining under consideration is suf-
ficiently fine so that a knowledge of the coarse grained distribution PUtp during
the entire history, both past and future, of the system's evolution is equivalent
to a knowledge of the original distribution.

We shall not stop'here for.a proof of the theorem which may be found elsewhere,
but let us mention ‘an important corollary of this result.

5. Corrollary 2.

For K flows the (negative) entropy functional
alp,) = [ py log py du , By = Polte

witILP0 denoting the coarse graining projection operation with respect to a K
partition, is a monotonically decreasing function (H function) of t which attains
the fine-grained value f p Inp dy at t » - « and the equilibrium value (0 due to
our normalization of p) at t + + .

This result follows immediately from theorem 1 because ﬁt = POUtp = N;Pop = WEpO
where W, is the semigroup of a strongly irreversible Markov process. It is well-
known that for such processes the functional @, and indeed any convex functional
of ﬁt’ is an H function. Let us mention that this result has recently been obtained
by Penrose and Goldstein by an independent argument [12].

Finally, let us mention that for K flow one cannot only construct a coarse
graining operation that leads from the deterministic and reversible evolution Ut

- to that of a strongly irreversible stochastic process, but one can also construct

an Znvertible and positivity preserving transformation A such that AUtA'1 is a’
strongly irreversible Markov semigroup for t = 0. In other terms, the unitary group
Ut induced from every K flow is nonunitarily equivalent, through a positivity
preserving similarity A, to the contraction semigroup of a stochastic Markov process.



A detailed discussion of this construction is described in our previous publi-
cations [4,5). Let us only mention that the operator A establishing nonunitary
equivalence between Ut and a stochastic Markov process wg may be constructed as
a suitable function of operator time T (3}

A =h(T) +P_
+oo
T=] adf, , F,=UpPur-P_ .

-0

Here P0 denotes the projection of coarse graining with respect to the K partition
) and P__, the projection to the equilibrium ensemble. With A constructed as
above, the functional ' ’ '

{ By log By du By = AU

03 3 3 ©
is again an H function.

5‘. Concluding Remarks
Let us emphasize that the possibility of obtaining an exact master equation from
dynamics as discussed here comes from the existence of suitable dynamics-dependent
operator A or P0 that explicitly break the time-reversal _(or velocity-inversion)
symmetry. The necessity of considering such dynamics-dependent transformations for
the passage from dynamics to irreversible evolution have been discussed in a pre-
vious publication [2]. This should be distinguished from the usual procedure of ob-
taining a master equation via a genéra]ized master equation, where one starts with
a projection that does mot depend on dynamics and does not break the time-reversa)
symmetry. In fact, as is well known, it is the approximation schemes (such as weak
coupling limit) that breaks the time-reversal symmetry in the conventional approach.
To see explicitly the noninvariance of the projection P0 under velocity inversion
let us consider the operation of velocity inversion which, by definition, has the
following properties

i) V preserves positivity,
ii) v& -1,
1) Uy = U_,V. A
Now, P0 being the projection with respect to the K partition £gs jt is clear that

UtP0U¥ = Pt is the projection with respect to Ttgo. The defining properties of )

(see Sect.?) translate into the following properties of Pt '

i) P .z P if tzS,



A41). 1im Pt =1, and
. ft >
i) lim P =P
t+-m

the projection onto the equilibrium ensemble. Suppose now that RO is invariant
under V, VPV = Pj. This would then imply that

P, = U P U¥ VU% = VU_ P U*tV X\VP V .

tPoUt = UgVP

t 0

Since Pt z P, for t 2 0 it follows that

0
Py =VP V=2 VPV =P, for tz0 .

Thus we have

Pt'= utPDu; 2 P0 for all real t

which is possible only if P0 t 0 Ut or P0 commutes with Ut This contrad1cts,
however, the properties that P + I, t++»and P -~ P_ o Lo

A variant of this argument shows also that no proaect1on operator P (whether
coming from a K part1t1on or not) which commutes with velocity inversion V can yield
an exact master equation, i.e., satisfy the relation PU w*P (For t 2 0) with a
strongly irreversible Markov semigroup N ’

Similar considerations show that the symmetry of velocity inversion is also
broken by invertible transformation A. It fact if VAV = A it would follow that

together with 1\UtA'1 (for t z 0) the operation VAUtA'1V = AU_tA-1 also preserves

positivity. However, AU_tI\_1 is1the inverse of Autﬁ_1 and they both can preserve
positivity if and only if AUtA is unitary [71. This, however, contradicts the
established fact {4,5] that, with A constructed as described in a previous section,
AU A -1 is a strong]y irreversible Markov semigroup and hence nonunitary.

F1na11y, let us briefly show that the classical objection (such as those of
Zermelo and Loschmidt) against the derivation of Boltzmann's H theorem does not

apply to the H functions n(pt),considered by us

Q(pt) = f ﬁt ]09 6t du
I‘ .
with
Py =Poey Or Moy s By =l .

Zermelo's objection, which is based on Poincare's recurrence theorem, obviously
does not apply as there can be no recurrence theorem for regular density functions
p. Let us emphasize in this connection that both P0 and A cannot be defined to act
on phase points or singular distributions, but must necessarily be defined as only
actiﬁg on regular density functions.

Loschmidt's objection which is based on symmetry of dynamical evolution under
velocity inversion is deeper. Indedd, computer calculation of Boltzmann's H quantity



H, = [ f(v) log f(v)dv ,

B

where f(v) is the one-particle velocity distribution, has been made for a system
of hard disks. If one starts with an initial distribution based on lattice sites
and with isotropic velocity distribution, then one finds that HB'does indeed de-
crease with time t. However, if all yelocities are inverted at time to,‘it is found
that HB behaves antithermodynamically (i.e., increases rather than decreases) in
the interval [to, ZtD]. This clearly demonstrates that‘Bo]tzm;nn's H theorem cannot
be valid for all initial density functions. In particular, it cannot be valid both
before and after velocity inversion,

In contrast the H function Q(pt) is a monotonically decreasing function of t for
all initial density p as long as the system remains isolated. Velocity inversion at
time ty» may cause,a discontinuous jump in ﬂ(pt) due to entropy {or 1nformation)
flow from the external apparatus implementing the velocity inversion; but Q(pt) again
continues to decrease as soon as the operation of velocity inversion is completed and
the system is again‘iso1ated from the outside. At no stage is there any antithermo-
dynamic behavior. In any cycle in which the system returns to its initial state 0
the net entropy flow dS from the outs1de to the system is negative in agreement
with the thermodynamic pr1nc1ple that the entropy production dS = -dSe inside the
system is positive. Let us illustrate this explicitly in the case that the initial
state is symmetric under velocity inversion Vp = p, and one takes by = POUtp in de-
fining ﬂ(pt). :

Now, using the notation @{t) = a(pt)

a(0) = [ (Pge) In (Pgo)du

a(ty.) =] (Pl #) In (Pgly o)

= f (UzPQU p) In (U* PU, p)dp
E 0°t ty 0ty

= f (P_y ®) In (P_ p)du 2(0) , tpz0
0

(Here the first equality follows because the expression f p In p du is invariant
under dynamical evolution Ut, and the inequality follows because P_t is a coarse
graining operation with respect to a coarser partition than that of 0).

If velocities are inversed at t; the H function 9(t0+) immediately after this
operation is given by :

2(t p) In (P,VU, p)du

0+) = £ 0 t0
= | (Pt Vp) n (PgU3Ve )du
T
f

(Py Vp)'ln(P VP)du =f (Ptoph In (Etop)du .



