Numerical Methods for
Chemical Engineering

Applications in MATLAB®

T

f
!

R

el ﬁ L W s %
Kenneth). Beers

CAMBRIDGE

Numerical Methods for
Chemical Engineering

Applications in MaTLAB®

KENNETH J. BEERS

Massachusetts Institute of Technology

25 CAMBRIDGE

& 5 UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, So Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521859714

© K. J. Beers 2007

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-85971-4 hardback
ISBN-10 0-521-85971-9 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for
external or third-party internet websites referred to in this publication, and does not guarantee that
any content on such websites is, or will remain, accurate or appropriate.

Numerical Methods for Chemical Engineering

Suitable for a first-year graduate course, this textbook unites the applications of numerical
mathematics and scientific computing to the practice of chemical engineering. Written in
a pedagogic style, the book describes basic linear and nonlinear algebraic systems all the
way through to stochastic methods, Bayesian statistics, and parameter estimation. These
subjects are developed at a-nominal level of theoretical mathematics suitable for graduate
engineers. The implementation of numerical methods in MAT Las® is integrated within
each chapter and numerous examples in chemical engineering are provided, together with a
library of corresponding MATLAB programs. Although the applications focus on chemical
engineering, the treatment of the topics should also be of interest to non-chemical engineers
and other applied scientists that work with scientific computing. This book will provide the
graduate student with the essential tools required by industry and research alike.
Supplementary material includes solutions to homework problems set in the text,
MATLAB programs and tutorial, lecture slides, and complicated derivations for the more
advanced reader. These are available online at www.cambridge.org/9780521859714.

KeENNETH J BEERS has been Assistant Professor at MIT since 2000. He has taught exten-
sively across the engineering discipline at both the undergraduate and graduate level. This
book is a result of the successful course the author devised at MIT for numerical methods
applied to chemical engineering.

Preface

This text focuses on the application of quantitative analysis to the field of chemical engi-
neering. Modern engineering practice is becoming increasingly more quantitative, as the
use of scientific computing becomes ever more closely integrated into the daily activities
of all engineers. It is no longer the domain of a small community of specialist practitioners.
Whereas in the past, one had to hand-craft a program to solve a particular problem, carefully
husbanding the limited memory and CPU cycles available, now we can very quickly solve far
more complex problems using powerful, widely-available software. This has introduced the
need for research engineers and scientists to become computationally literate — to know the
possibilities that exist for applying computation to their problems, to understand the basic
ideas behind the most important algorithms so as to make wise choices when selecting and
tuning them, and to have the foundational knowledge necessary to navigate independently
through the literature.

This text meets this need, and is written at the level of a first-year graduate student
in chemical engineering, a consequence of its development for use at MIT for the course
10.34, “Numerical methods applied to chemical engineering.” This course was added in
2001 to the graduate core curriculum to provide all first-year Masters and Ph.D. students
with an overview of quantitative methods to augment the existing core courses in transport
phenomena, thermodynamics, and chemical reaction engineering. Care has been taken to
develop any necessary material specific to chemical engineering, so this text will prove
useful to other engineering and scientific fields as well. The reader is assumed to have taken
the traditional undergraduate classes in calculus and differential equations, and to have
some experience in computer programming, although not necessarily in MATLAB®.

Even a cursory search of the holdings of most university libraries shows there to be a
great number of texts with titles that are variations of “Advanced Engineering Mathematics”
or “Numerical Methods.” So why add yet another?

I find that there are two broad classes of texts in this area. The first focuses on intro-
ducing numerical methods, applied to science and engineering, at the level of a junior
or senior undergraduate elective course. The scope is necessarily limited to rather simple
techniques and applications. The second class is targeted to research-level workers, either
higher graduate-level applied mathematicians or computationally-focused researchers in
science and engineering. These may be either advanced treatments of numerical methods
for mathematicians, or detailed discussions of scientific computing as applied to a specific
subject such as fluid mechanics.

X

Preface

Neither of these classes of text is appropriate for teaching the fundamentals of scientific
computing to beginning chemical engineering graduate students. Examples should be typ-
ical of those encountered in graduate-level chemical engineering research, and while the
students should gain an understanding of the basis of each method and an appreciation of
its limitations, they do not need exhaustive theory-proof treatments of convergence, error
analysis, etc. It is a challenge for beginning students to identify how their own problems
may be mapped into ones amenable to quantitative analysis; therefore, any appropriate text
should have an extensive library of worked examples, with code available to serve later as
templates. Finally, the text should address the important topics of model development and
parameter estimation. This book has been developed with these needs in mind.

This text first presents a fundamental discussion of linear algebra, to provide the necessary
foundation to read the applied mathematical literature and progress further on one’s own.
Next, a broad array of simulation techniques is presented to solve problems involving
systems of nonlinear algebraic equations, initial value problems of ordinary differential
and differential-algebraic (DAE) systems, optimizations, and boundary value problems of
ordinary and partial differential equations. A treatment of matrix eigenvalue analysis is
included, as it is fundamental to analyzing these simulation techniques.

Next follows a detailed discussion of probability theory, stochastic simulation, statistics,
and parameter estimation. As engineering becomes more focused upon the molecular level,
stochastic simulation techniques gain in importance. Particular attention is paid to Brownian
dynamics, stochastic calculus, and Monte Carlo simulation. Statistics and parameter esti-
mation are addressed from a Bayesian viewpoint, in which Monte Carlo simulation proves a
powerful and general tool for making inferences and testing hypotheses from experimental
data.

In each of these areas, topically relevant examples are given, along with MATLAB
(www.mathworks.com) programs that serve the students as templates when later writing
their own code. An accompanying website includes a MATLAB tutorial, code listings of
all examples, and a supplemental material section containing further detailed proofs and
optional topics. Of course, while significant effort has gone into testing and validating these
programs, no guarantee is provided and the reader should use them with caution.

The problems are graded by difficulty and length in each chapter. Those of grade A are
simple and can be done easily by hand or with minimal programming. Those of grade B
require more programming but are still rather straightforward extensions or implementations
of the ideas discussed in the text. Those of grade C either involve significant thinking beyond
the content presented in the text or programming effort at a level beyond that typical of the
examples and grade B problems.

The subjects covered are broad in scope, leading to the considerable (though hopefully
not excessive) length of this text. The focus is upon providing a fundamental understanding
of the underlying numerical algorithms without necessarily exhaustively treating all of their
details, variations, and complexities of use. Mastery of the material in this text should enable
first-year graduate students to perform original work in applying scientific computation to
their research, and to read the literature to progress independently to the use of more
sophisticated techniques.

Preface xi

Writing a book is a lengthy task, and one for which I have enjoyed much help and
support. Professor William Green of MIT, with whom I taught this course for one semester,
generously shared his opinions of an early draft. The teaching assistants who have worked
on the course have also been a great source of feedback and help in problem-development,
as have, of course, the students who have wrestled with intermediate drafts and my evolving
approach to teaching the subject. My Ph.D. students Jungmee Kang, Kirill Titievskiy, Erik
Allen, and Brian Stephenson have shown amazing forbearance and patience as the text
became an additional, and sometimes demanding, member of the group. Above all, I must
thank my family, and especially my supportive wife Jen, who have been tracking my progress
and eagerly awaiting the completion of the book.

Contents

Preface

Linear algebra

Linear systems of algebraic equations

Review of scalar, vector, and matrix operations
Elimination methods for solving linear systems
Existence and uniqueness of solutions

The determinant

Matrix inversion

Matrix factorization

Matrix norm and rank

Submatrices and matrix partitions

Example. Modeling a separation system
Sparse and banded matrices

MATLAB summary

Problems

Nonlinear algebraic systems

Existence and uniqueness of solutions to a nonlinear algebraic equation

Iterative methods and the use of Taylor series

Newton’s method for a single equation

The secant method

Bracketing and bisection methods

Finding complex solutions

Systems of multiple nonlinear algebraic equations

Newton’s method for multiple nonlinear equations

Estimating the Jacobian and quasi-Newton methods

Robust reduced-step Newton method

The trust-region Newton method

Solving nonlinear algebraic systems in MATLAB

Example. 1-D laminar flow of a shear-thinning polymer melt

Homotopy

Example. Steady-state modeling of a condensation
polymerization reactor

page ix

O W = =

32
36
38
44
44
45
46
56
57

61
61
62
63
69
70
70
71
72
77
79
81
83
85
88

89

Vi

Contents

Bifurcation analysis
MATLAB summary
Problems

Matrix eigenvalue analysis

Orthogonal matrices

A specific example of an orthogonal matrix

Eigenvalues and eigenvectors defined

Eigenvalues/eigenvectors of a 2 x 2 real matrix

Multiplicity and formulas for the trace and determinant

Eigenvalues and the existence/uniqueness properties of linear
systems

Estimating eigenvalues; Gershgorin’s theorem

Applying Gershgorin’s theorem to study the convergence of iterative
linear solvers

Eigenvector matrix decomposition and basis sets

Numerical calculation of eigenvalues and eigenvectors in MATLAB

Computing extremal eigenvalues

The QR method for computing all eigenvalues

Normal mode analysis

Relaxing the assumption of equal masses

Eigenvalue problems in quantum mechanics

Single value decomposition SVD

Computing the roots of a polynomial

MATLAB summary

Problems

Initial value problems

Initial value problems of ordinary differential equations
(ODE-IVPs)

Polynomial interpolation

Newton—Cotes integration

Gaussian quadrature

Multidimensional integrals

Linear ODE systems and dynamic stability

Overview of ODE-IVP solvers in MATLAB

Accuracy and stability of single-step methods

Stiff stability of BDF methods

Symplectic methods for classical mechanics

Differential-algebraic equation (DAE) systems

Parametric continuation

MATLAB summary

Problems

94
98
99

104
104
105
106
107
109

110
111

114
117
123
126
129
134
136
137
141
148
149
149

154

155
156
162
163
167
169
176
185
192
194
195
203
207
208

Contents vii
Numerical optimization 212
Local methods for unconstrained optimization problems 212
The simplex method 213
Gradient methods 213
Newton line search methods 223
Trust-region Newton method 225
Newton methods for large problems 227
Unconstrained minimizer fminunc in MATLAB 228
Example. Fitting a kinetic rate law to time-dependent data 230
Lagrangian methods for constrained optimization 231
Constrained minimizer fmincon in MATLAB 242
Optimal control 246
MATLAB summary 252
Problems 252
Boundary value problems 258
BVPs from conservation principles 258
Real-space vs. function-space BVP methods 260
The finite difference method applied to a 2-D BVP 260
Extending the finite difference method 264
Chemical reaction and diffusion in a spherical catalyst pellet 265
Finite differences for a convection/diffusion equation 270
Modeling a tubular chemical reactor with dispersion; treating

multiple fields 279
Numerical issues for discretized PDEs with more than two

spatial dimensions 282
The MATLAB 1-D parabolic and elliptic solver pdepe 294
Finite differences in complex geometries 294
The finite volume method 297
The finite element method (FEM) 299
FEM in MATLAB 309
Further study in the numerical solution of BVPs 311
MATLAB summary 311
Problems 312
Probability theory and stochastic simulation 317
The theory of probability 317
Important probability distributions 325
Random vectors and multivariate distributions 336
Brownian dynamics and stochastic differential equations

(SDEs) 338
Markov chains and processes; Monte Carlo methods 353
Genetic programming 362

viii

Contents

MATLAB summary
Problems

Bayesian statistics and parameter estimation

General problem formulation

Example. Fitting kinetic parameters of a chemical reaction
Single-response linear regression

Linear least-squares regression

The Bayesian view of statistical inference

The least-squares method reconsidered

Selecting a prior for single-response data

Confidence intervals from the approximate posterior density
MCMC techniques in Bayesian analysis

MCMC computation of posterior predictions

Applying eigenvalue analysis to experimental design
Bayesian multi response regression

Analysis of composite data sets

Bayesian testing and model criticism

Further reading

MATLAB summary

Problems

Fourier analysis

Fourier series and transforms in one dimension
1-D Fourier transforms in MATLAB
Convolution and correlation

Fourier transforms in multiple dimensions
Scattering theory

MATLAB summary

Problems

References

Index

364
365

372
372
373
377
378
381
388
389
395
403
404
412
414
421
426
431
431
432

436
436
445
447
450
452
459
459

461

464

Linear algebra

This chapter discusses the solution of sets of linear algebraic equations and defines basic
vector/matrix operations. The focus is upon elimination methods such as Gaussian elim-
ination, and the related LU and Cholesky factorizations. Following a discussion of these
methods, the existence and uniqueness of solutions are considered. Example applications
include the modeling of a separation system and the solution of a fluid mechanics boundary
value problem. The latter example introduces the need for sparse-matrix methods and the
computational advantages of banded matrices. Because linear algebraic systems have, under
well-defined conditions, a unique solution, they serve as fundamental building blocks in
more-complex algorithms. Thus, linear systems are treated here at a high level of detail, as
they will be used often throughout the remainder of the text.

Linear systems of algebraic equations

We wish to solve a system of N simultaneous linear algebraic equations for the N unknowns
X1,X2, ..., Xy, that are expressed in the general form

anx) +apxy + -+ ajyxy = by
anx) +anx; + -+ aynxy = by (1.1)

anixy +anaxy + - -+ aynxy = by

aij is the constant coefficient (assumed real) that multiplies the unknown x; in equation
i. b; is the constant “right-hand-side” coefficient for equation i, also assumed real. As a
particular example, consider the system

xX1+x+x3=4
21+ x +3x3=7 (1.2)
3X1 +)C2+6X3 =72

for which
a11=1 01221 (11321 b1=4
ay = 2 azy = 1 azy = 3 bz =7 (13)
a31=3 a32=1 (133:6 b3:2

2

1 Linear algebra

[t is common to write linear systems in matrix/vector form as

Ax=0b (1.4)
where

an a2 a1z ... 4y X1 by

ax axn a3y ... amw X2 by
A= .) .) x=|. b=, (1.5)

aNyiy an2 dn3 ... JA4pnN XN by
Row i of 4 contains the values a;1, a;2, ..., a;y that are the coefficients multiplying each
unknown xi, X2, . .., Xy in equation i. Column j contains the coefficients aij,azj, ...,ay;
that multiply x; in each equation i = 1,2, ..., N. Thus, we have the following associations,

coefficients multiplying
rows < equations columns & a specific unknown
in each equation

We often write 4x = b explicitly as

apn a2 ... an X1 by
a1 ayn ... ay X2 by

=1 . (1.6)
anyi anz ... aww XN by

For the example system (1.2),

I 1 1
A=12 1 3
31 6

(1.7)

S)
Il
N b

In MATLAB we solve 4x = b with the single command, x = A\b. For the example (1.2),
we compute the solution with the code

A=[111;213;316];

b=1[4;7;2];

x = A\b,

M=
19.0000
-7.0000
-8.0000

Thus, we are tempted to assume that, as a practical matter, we need to know little
about how to solve a linear system, as someone else has figured it out and provided
us with this handy linear solver. Actually, we shall need to understand the fundamen-
tal properties of linear systems in depth to be able to master methods for solving more
complex problems, such as sets of nonlinear algebraic equations, ordinary and partial

Review of scalar, vector, and matrix operations 3

differential equations, etc. Also, as we shall see, this solver fails for certain common
classes of very large systems of equations, and we need to know enough about linear
algebra to diagnose such situations and to propose other methods that do work in such
instances. This chapter therefore contains not only an explanation of how the MATLAB
solver is implemented, but also a detailed, fundamental discussion of the properties of linear
systems.

Our discussion is intended only to provide a foundation in linear algebra for the practice of
numerical computing, and is continued in Chapter 3 with a discussion of matrix eigenvalue
analysis. For a broader, more detailed, study of linear algebra, consult Strang (2003) or
Golub & van Loan (1996).

Review of scalar, vector, and matrix operations

As we use vector notation in our discussion of linear systems, a basic review of the concepts
of vectors and matrices is necessary.

Scalars, real and complex

Most often in basic mathematics, we work with scalars, i.e., single-valued numbers. These
may be real, such as 3, 1.4, 5/7,3.14159, or they may be complex, 1 + 2i, 1/2 i, where
i = «/—1. The set of all real scalars is denoted R. The set of all complex scalars we call
C. For a complex number z € C, we write z = a + ib, where a, b € R and

a = Re{z} = real part of z

b = Im{z} = imaginary part of z (1.8)
The complex conjugate, z = z*,of z=a +ibis
z=z"=a—ib (1.9)
Note that the product zz is always real and nonnegative,
zZz = (a —ib)a + ib) = a* —iab+iab— i’b* =a® + b* > 0 (1.10)
so that we may define the real-valued, nonnegative modulus of z, |z|, as
2l = Viz =Va? + B2 > 0 (1.11)
Often, we write complex numbers in polar notation,
z=a+ib=|z|(cos® +isind) 6 =tan"'(b/a) (1.12)

Using the important Euler formula, a proof of which is found in the supplemental material
found at the website that accompanies this book,

e =cosf +isind (1.13)

4

1 Linear algebra

el'l=(1,0,0)

ell=(0,0,1)

Figure 1.1 Physical interpretation of a 3-D vector.

we can write z as

z = |z|e” (1.14)

Vector notation and operations

We write a three-dimensional (3-D) vector v (Figure 1.1) as
v=| v, (1.15)

v is real if v, vy, v3 € M; we then say v e R3. We can easily visualize this vector in 3-
D space, defining the three coordinate basis vectors in the 1(x), 2(y), and 3(z) directions
as

1 0 0
=10 2l = |1 eBPl=10 (1.16)
0 0 1
to write v € N3 as
v=uvell + vyeld 4 v;el’! (1.17)

We extend this notation to define RY, the set of N-dimensional real vectors,

V1
v2
=1 (1.18)
UN
where v; € Rfor j = 1,2, ..., N. By writing v in this manner, we define a column vector,

however, v can also be written as a row vector,
v=1[v; v3... wvy] (1.19)

The difference between column and row vectors only becomes significant when we start
combining them in equations with matrices.

Review of scalar, vector, and matrix operations 5

We write v € " as an expansion in coordinate basis vectors as
v=viell +ve? + ... 4 vye (1.20)

where the components of el/! are Kroenecker deltas § .,

/1

e ajl
e 8j2 1, ifj=k
Ul = = Su=1" .7 1.21
¢ : I [0, ifj £k (1.21)
[Jj1 S
en JN
Addition of two real vectors v e RV, w € RV is straightforward,
V] wi v+ wy
V2 W) vy + w)
v+w=| _ |+ . = . (1.22)
UN WN Uy + wy
as is multiplication of a vector v € R”" by a real scalar ¢ € R,
V1 (&]
V2 cVy
cv=c| . = . (1.23)
UN CUyN
Forall u, v, w e WY and all ¢, c; € iR,
u+@+w)y=m+v)y+w c(v+u)=cv+cu
ut+v=v+u (c1 +c)v=civ+ v (1.24)
v+0=v (c162)v = ci1(caw)
v+ (—v)=0 lv=wv
where the null vector 0 € RV is
0
0
0= . ; (1.25)
0

We further add to the list of operations associated with the vectors v, w € " the dot
(inner, scalar) product,

N
’U'W=v1W1+02W2+~'-+UNWN=ZUka (1.26)
=

6

1 Linear algebra

For example, for the two vectors
1 4
v=|2 w=|35 (1.27)
3 6

VW =W+ Wy + 3wy = (1)(4) + (2)(5) + (3)(6)
=44+10+18=32 (1.28)

For 3-D vectors, the dot product is proportional to the product of the lengths and the cosine
of the angle between the two vectors,

v-w = |v||w|cosb (1.29)
where the length of v is
[v| =s/v-v>0 (1.30)

Therefore, when two vectors are parallel, the magnitude of their dot product is maximal
and equals the product of their lengths, and when two vectors are perpendicular, their dot
product is zero. These ideas carry completely into N- dimensions. The length of a vector
veNRVis

lv| =/v-v=

N
> vi=0 (1.31)
k=1

If v-w =0, vandw are said to be orthogonal, the extension of the adjective “perpendic-
ular” from 903 to WY, If v-w = 0 and |[v] = |w| = 1, i.e., both vectors are normalized to
unit length, v and w are said to be orthonormal.

The formula for the length |v| of a vector v € NV satisfies the more general properties
of a norm ||v|| of v € RY. A norm ||v|| is a rule that assigns a real scalar, ||v|| €)i, to each
vector v € RY such that for every v, w € RY, and for every ¢ € N, we have

vl =0 0] =0
o] =0 if and only if (iff) v=20
llevll = lel|lvll

lo+wlil < llvll + [Iw]]

(1.32)

Each norm also provides an accompanying metric, a measure of how different two vectors
are

d(v,w) = ||lv—w]| (1.33)

[n addition to the length, many other possible definitions of norm exist. The p-norm, v,
of ve MV is

N 1/p
loll, = [Z mv] (1.34)
k=1

