Computer Science with

- Mathematica

Theory and Practice for
Science, Mathematics,
and Engineering

' |
“ *‘

A
‘ ; ‘ &£

w Roman E. Maeder 3

Computer Science with Mathematica

Theory and Practice for Science, Mathematics,
and Engineering

Roman E. Maeder

CAMBRIDGE
UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Ruiz de Alarcon 13, 28014 Madrid, Spain

© Roman E. Maeder 2000

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2000
Printed in the United States of America

Typeset by the author using Mathematica 4.0 and the TgX typesetting language on a Sun ULTRAsparc Il computer.
A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data
Maeder, Roman.
Computer science with Mathematica : theory and practice for
science, mathematics, and engineering / Roman E. Maeder.
p. cm.
Includes index.
ISBN 0-521-63172-6. — ISBN 0-521-66395-4 (pbk.)
1. Mathematica (Computer file) 2. Mathematics — Data processing.
3. Mathematica (Computer programming language) 1. Title.
QA76.95.M34 1999
510.285'5369—dc21 99-38932
CIP

The author and Cambridge University Press, Inc., make no representations, expressed or implied, with respect to this
documentation or the software it describes, including, without limitations, any implied warranties of merchantability or fitness
for a particular purpose, all of which are expressly disclaimed. The author, or Cambridge University Press, their licensees,
distributors, and dealers shall in no event be liable for any indirect, incidental, or consequential damages.

ISBN 0521 631726 hardback
ISBN 0 521 66395 4 paperback

Preface

This book provides an introduction to computer science, and shows how modern computer-
based tools can be used in science, mathematics, and engineering. Computer-aided math-
ematics has reached a level where it can support effectively many computations in science
and engineering. In addition to treating traditional computer-science topics, an introductory
book should show scientists and engineers how these computer-based tools can be used to
do scientific computations. Students must get to know these possibilities, and they must gain
practical experience. Learning a traditional programming language becomes less important,
just as learning arithmetic is not a main topic of mathematics education. In an introductory
book, it is clearly necessary to limit ourselves to a small part of the huge field of computer
science. We emphasize topics that are related to possible applications in mathematics and the
sciences. Technical and practical computer science have therefore been neglected.

It is certainly worthwhile to combine an introductory computer-science course with exer-
cises. In the same way as we learn a foreign language by speaking the language and by studying
literature in that language, we should apply algorithmic knowledge by studying programs and
writing our own. If we can solve an interesting problem from mathematics or the sciences at
the same time, all the better! Traditionally, such introductory courses use languages such as
Pascal, C, or FORTRAN. These languages have in common that the effort to develop even a
small program (one that adds two numbers, for example) is considerable. One has to write
a main program that deals with input and output, and to compile the program. Furthermore,
these languages cannot be used easily to solve nonnumerical problems. Leaving aside these
practical difficulties gives us room to look at other topics in computer science, an extension that
is not offered in traditional programming courses. In this way, we gain insight into computer
science, which consists of much more than writing small programs.

Another disadvantage of traditional languages is that they support only procedural pro-
gramming. This style is an important one, but it is not the only option and it is not always the
best approach. I prefer a language that does not force this programming style on programmers.
The programming style should be chosen to fit the problem to be solved, rather than vice
versa. The language should be interactive, to encourage experimentation and to allow us to
call individual functions without having to write a whole program.

Mathematica was first released in 1988, and it is being used with increasing frequency
in teaching, research, and industry. A by-product of the symbolic computation system, it
is a programming language that differs from traditional languages in many important ways.

ix

Preface

Conventional languages are not well suited to expressing mathematical formulae and algo-
rithms. LISP and other functional languages showed alternatives. An important aspect of
scientific computation is an easy way to express mathematical rules. Application of rules by
machine requires good pattern-matching capabilities of the kind found in Prolog. Another
prerequisite is that it be simple to manipulate structured data. Such structural operations have
been pioneered by APL. Object-oriented elements and modularization are important tools for
developing larger projects. Ideas were taken from Simula, Smalltalk, and C++. We also want
to support traditional procedural programming in the style of Pascal and C. All these objec-
tives lead to a large language with many built-in functions. It nevertheless has a consistent
and uniform style, made possible through the use of rewrite rules, which underly all other
programming constructs. Such a language is also interactive and therefore easy to use. It is
not necessary to compile functions or to embed them into a main program to use them. The
additional step of compilation increases the difficulty of program development and requires
special tools (debuggers) to study the behavior of programs.

Because Mathematica also contains most operations needed in mathematics and physics,
it is especially well suited for an introductory course in computer science for readers interested
primarily in the sciences and engineering. It allows us to treat interesting examples easily.
There is no good reason, for example, to restrict the range of integers to 2, 147,483,647, as
is done in most programming languages. This restriction makes no sense in mathematics.
Programming with recursively defined functions is often treated as extraordinary and difficult.
We can express naturally many mathematical algorithms, however, by using recursion, and it
should be possible to formulate recursion easily in a language. For example, the properties of
the greatest common divisor of two integers leading directly to Euclid’s algorithm,

ged(a, b)
ged(a, 0)

gcd(b, a mod b)

a,

can be expressed verbatim in Mathematica and tried out immediately. Asin LISP, the technique
of tail-recursion elimination in Mathematica ensures that the corresponding program runs as
fast as the loop that is normally used (which is not the case in most procedural languages).
Deriving the loop invariant and programming the same function as a loop leads naturally to
systematic programming and considerations of program correctness.

Mathematica is helpful in all areas of computer use in mathematics, in the sciences, and
in engineering:

= Its numerical part, which allows arithmetic to arbitrary precision, can be used to treat
numerical mathematics, including traditional floating-point arithmetic.

= Its symbolic part does computations with formulae, solves equations, performs series ex-
pansions and transformations, and knows calculus to the level required for an undergraduate
degree.

Preface xi

= The programming language supports all traditional programming styles, including proce-
dural programming. The language can therefore be used for traditional computer-science
classes (algorithms and data structures) as well.

= The rule-based programming system allows a natural expression of scientific facts.

= Graphics allows the meaningful presentation of results and experimental data. It is also
useful for showing how algorithms work.

= We can call external programs and exchange results, so we can use external software
libraries and even control laboratory experiments.

This book grew out of class notes for a course given at the Department of Mathematics and
Physics at the Swiss Federal Institute of Technology, Zurich. It was originally published in

my native German language [48], and I am glad to present now my own English translation
and adaptation.

I am thankful to Erwin Engeler, John Gray, and Stephen Wolfram for their inspiration and
many interesting discussions. Helpful suggestions on particular topics came from R. Marti
and H. Mossenbdck. Lyn Dupré proofread an early version of the manuscript, and Karen
Tongish copyedited the final version. The publishers of the German and English editions,
Ekkehard Hundt and Alan Harvey, helped me to keep going. Many thanks to the anonymous
reviewer whose favorable comments and useful suggestions motivated me to finish this project.

R. E. M.
Wollerau, March 1999

About This Book

The emphasis of this introduction to computer science is algorithmics — that is, the study
of algorithms. We do not want this activity to become a dry exercise, so we shall try out
all algorithms as soon as possible. Our programs will often consist of only a few lines of
code. Such simplicity allows us to concentrate on the essentials and to ignore peripheral
matters such as input, output, and driver programs. Often, however, we shall develop whole
packages, collections of various procedures grouped around a topic. The methods for writing
such packages will be explained in Chapter 4. After all, computer science is not about writing
small, throwaway programs but rather developing larger applications. In addition to finding
suitable algorithms, this entails techniques of documentation and maintenance of software.
We shall present some of these techniques.

Mathematica does have a major advantage over traditional programming languages: It
is interactive. Interactivity encourages experimentation and allows us to test each function
separately and to study its behavior. In the first section we shall study recursively defined
functions, a topic often considered difficult and therefore treated with caution. We also have

at our disposal a symbolic, numerical, and graphic computation system — an added benefit that
we shall use in many ways.

Overview of Contents

Each chapter after the first two introductory ones presents a topic from computer science
together with its applications and examples in mathematics, the sciences, and engineering. You
can choose from the many applications presented those that correspond to your background.
Because only one system (Mathematica) is used for all programs and all calculations, the
extra work of learning about practical matters such as editing or working with the application
is minimized. My experiences have shown that Mathematica is rather easy to learn; you
will be able to work with it quite soon, after overcoming any initial difficulties you might
encounter.

Chapter 1 is not a prerequisite for the rest of the text, if you already know something about
computers. It shows how computers can be used in the sciences, explains the history and
current state of computers, and discusses what computer science is all about.

The quick introduction to Mathematica’s syntax in Chapter 2 should be studied with a
computer at hand, so you can try out the calculations for yourself and get a feeling for what it

xiii

xiv - About This Book

is like to work with Mathematica. The elements of programming presented in Sections 2.1-2.3
are the foundation of our programs.

In Chapter 3, we use two simple examples to show how mathematical questions can be
turned into computer programs. The most important concepts are iteration and recursion. The
section on loop invariants gives a method for proving programs correct.

Chapter 4 explains how programs in Mathematica are structured. We start with simple
commands, which we turn into a program by defining a few functions. We will give guidelines
for turning a program into a package. Packages allow for easier use of programs and prevent
unwanted side effects on other programs, which might have similar function names. The tools
we use are modularization and separation of the interface (for the user of our program) and the
implementation (for the program developer). You can use these techniques as recipes, even if
you do not know how they work in detail. You can use our template package as a starting point.

Abstract data types, presented in Chapter 5, constitute one of the most important tools for
the design of programs. These methods allow a clean separation of design and implementation.
We shall use them in most of our programs in this book.

Algorithms for searching and sorting are the basic building blocks of many programs. The
algorithms presented in Chapter 6 are part of basic computer-science knowledge.

Problems can be solved in many ways. One aspect to consider when choosing a method
is the complexity of the resulting algorithm. Chapter 7 provides an introduction to algorith-
mic complexity. As an example, we look at the computation of large Fibonacci numbers,
optimization problems, and arbitrary-precision arithmetic.

Vectors and matrices are important data structures for mathematical applications. We
present several important operations on them and look at a few algorithms from linear algebra
in Chapter 8.

In Chapter 9, we program in LISP, a language that we can interpret in Mathematica easily.
Recursion is the most important tool for solving problems in LISP, where it replaces iteration.

For many scientific problems, rule-based programming is the simplest method of solution.
It is also the foundation of Mathematica’s programming language. In Chapter 10, we shall look
at the important concepts of simplification and normal forms, as well as at some applications.

Functions are of central importance in mathematics. They play a lesser role in computer
science, because many programming languages have only rudimentary means of dealing
with them. An important exception are the functional languages, including Mathematica.
Functions are the topic of Chapter 11. That chapter highlights the differences between the
symbolic computation system Mathematica and ordinary languages.

In Chapter 12, we give a short introduction to theoretical computer science. There we see
that this topic is not necessarily as “theoretical” as is often feared. We answer the question of
what the fundamental limits of computers are and show that some problems cannot be solved
by machine, even disregarding the practical matters of limited memory and computing time.

Databases are the most important commercial application of computers. Managing large
volumes of data demands reliable and powerful programs. A precise mathematical model of

About This Book XV

collections of data provides the tools for their easy manipulation. We treat these concepts in
Chapter 13.

Chapter 14 introduces an important programming style: object-oriented programming. It
is especially useful for larger applications and for the design of reusable software.

Appendix A is an annotated bibliography on the topics programming methods, teaching
with Mathematica, and literature about Mathematica; it includes a section with references for
the topics treated in this book, followed by the bibliographical data.

The more detailed explanations about the structure of Mathematica given in Appendix B
are useful for self-study and are also meant as a reference. For a complete reference to
Mathematica, you should consult The Mathematica Book [74]. The appendix of that manual
contains an alphabetical listing of all built-in functions, commands, and other objects. This
listing, as well as the complete manual, is available on-line in Mathematica (in the Help
Browser). Looking up an item there is much easier than is looking it up in a heavy book.
Studying the Mathematica manual is not a prerequisite for reading this book.

Appendix B also contains a section that demonstrates Mathematica’s more advanced
capabilities. Finally, we give the programs used to generate the chapter-opener pictures.

Certain sections are labeled “Advanced Topic.” They presume that the reader has a more
complete mathematical background than is required for the rest of the book; they are optional.

Sections marked “Special Topic” are independent from the rest of the book. Sections
marked “Example” or “Application” develop a topic using a larger example that is of interest
in its own right.

At the end of most sections, there is a review list, entitled “Key Concepts,” of new concepts
that have been introduced. At the end of the chapters, you will find numerous exercises.

The verso page following a chapter title contains a brief overview of the sections in the
chapter, and an explanation of the graphic illustration on the title page. The programs for
generating these pictures are in the package Pictures.m; see Section B.2.

Comments on Exercises

We assume that you already know how to work with your computer. The installation of Math-
ematica on your machine is explained in the documentation that comes with the software. This
documentation includes a manual that explains the machine-specific features of Mathematica.
The best way to learn Mathematica is to do practical exercises at the machine. In the beginning,
you may want to look at one of the included demonstration documents before moving on to your
own small examples. You can also find simple examples in the section titled “A Tour of Math-
ematica” in The Mathematica Book. We recommend that you work through such examples.
There are two ways to use Mathematica on a computer: the Notebook frontend and a
simple dialog with the kernel of Mathematica (the kernel is the part that does the actual
computations; the frontend serves as a user interface to the kernel). The Notebook frontend
is more comfortable to use, but is not required for the examples in this book, which have

xvii - About This Book

all been computed by direct interaction with the kernel. All examples have been tested with
Version 4.0 of Mathematica.

If you use the Notebook frontend, your interaction with Mathematica will look a bit
different from the way it is presented in the book, but the results will be the same. Numbering
of your inputs happens only after they have been sent to kernel for evaluation (with SHIFT-
RETURN or ENTER), because the number is given out by the kernel, rather than by the frontend.
An example Notebook is reproduced on page 95.

Please note that each example has been computed in a fresh Mathematica session. We
recommend that you begin new sessions to avoid any influences from previous computations
whenever the numbering of the input lines restarts at 1. Under the Notebook frontend, you
can choose the menu command Quit Kernel to start a fresh kernel.

The frontend allows you to store your programs and your sample computations in the same
document (the Notebook) and to open them again in the future. We recommend, however,
that you store packages in separate files, and read them into Mathematica using <<file* . This
command to read in a package is often not shown in the dialogs in this book. If you want to
reproduce the examples, you must read the appropriate programs into Mathematica first.

Electronic Resources

All programs mentioned in this book are available in machine-readable form
from the book’s Web site, located at http://www.mathconsult.ch/CSM/.
There, you will find compressed archives of all files ready to download. Pack-
ages have the extension .m; Notebooks have the extension .nb. Both kinds of
files can be opened with the frontend. Packages can be read into the kernel
directly (using <<CSM" file") and can also be opened with any text editor (in ASCII mode).
The archive should be extracted into the AddOns/Applications subdirectory of your Mathe-
matica installation directory. Extraction will create a subdirectory CSM inside the Applications
directory.

Mathematica can display its own installation ~ In[1]:= $TopDirectory
directory. The value of $TopDirectory
will reflect the actual place where you in-
stalled Mathematica on your computer.

Out[1]= /usr/local/Mathematica

If you installed the files correctly, this simple ~ In[2]:= << CSM‘Test"
test should give the result shown here. Note
the use of the backquote ‘ as a machine-] o
independent way to specify directories and /usr/local/Mathematica/AddOns/Applications/CSM

files.

The CSM packages are correctly installed in

All packages mentioned in this book can be ~ In[3]:= << CSM‘ComplexParametricPlot'
loaded by prefixing their name with the di-
rectory, CSM.

About This Book xvii

Please refer to the book’s Web site for up-to-date information on available archive formats and
detailed installation instructions.

The programs are protected by copyright. You may copy them only for your personal use.
If this book is a required text in a class you teach, you may also make the programs available
to your students on the computer network used for the exercise sessions. To copy otherwise
requires prior written permission from the author.

The author and Cambridge University Press, Ltd., make no representations, expressed or
implied, with respect to this software, including, without limitations, any implied warranties
of merchantability or fitness for a particular purpose, all of which are disclaimed expressly.
The author or Cambridge University Press, their licensees, distributors, or dealers shall in
no event be liable for any indirect, incidental, or consequential damages.

In addition to the programs, the book’s Web site contains other information, such as
notebooks, updates, a list of errata, and the archive of the mailing list intended for readers of
this book. I encourage you to join the mailing list. Please see the Web site for details.

Notation and Terminology

Mathematica input and output is typeset in a typewriterlike style (in the Courier font):
Expand[(x+y) 9] . Parts of Mathematica expressions not to be entered verbatim, but denot-
ing (meta) variables, are set in italic: f[var_] := body.

Functions or commands are denoted by their name, followed by an empty argument list in
square brackets: Expand[]. Program listings are delimited by horizontal lines:

a[1] = af2] =1

aln_Integer?Positive] := aln] = alaln-1]] + aln-1-a[n-1]]

A sequence by John H. Conway.

A program package is identified by name (the context name, as we shall see) — for example,
Complex. The files used for storing successive versions of this package will be named
Complex1.m, Complex2.m, and so on. The final version will be called Complex.m.

Mathematica dialog is set in two columns. The left column contains explanations; the right
column contains input and output, including graphics. This form of presentation is derived
from The Mathematica Book.

As usual, we will clarify program structure by indentation. Mathematica allows writing
deeply nested expressions. It is, therefore, often necessary to break such expressions into
multiple lines.

xviii About This Book

Here is an example of such a dialog. You In[1]:= Factor[xs34 - 1]
would enter only the input set in boldface. t[1]1= (-1 + x) (1
The prompt In[1]:= is printed by Math- h * =

ematica. If you work with the Notebook 2 3 4 5 6 7 8 9
: : 1-x+x -x +x -x +x -x +x -x +
frontend, this prompt will appear after you
evaluate your input with ENTER. 10 11 12 13 14 16 16
X - X + x - X + x - X + x

(1+x+x +x +x +x +x +x +x +x +

10 11 12 13 14 16 16
x +x +x + x +x + x +:x)

In most programming languages, you can define procedures, functions, or subroutines. Mathe-
matica uses only one mechanism, called definitions, which look like f[2_] := def. Chapter2
provides a short explanation of the elements of Mathematica’s programming language. A more
in-depth presentation is given in Appendix B.

The table on page xx lists the mathematical notations that we use. Equations, figures,
program listings, and tables are numbered by section. For example, Equation 3.1-1 is the first
equation in Section 3.1.

Colophon

Mathematica dialogs were computed on a Sun ULTR Asparc II with Version 4.0 of Mathematica
using the initialization file init.m reproduced here.

Format[Continuation[_]] := ""

SeedRandom[10000]

0ff[General::spell, General::spelll]

Unprotect[Short]

Short[e_] := Short[e, 2] (* lines are very short *)
Protect[Short]

SetOptions[Plot3D, AspectRatio -> Automatic, PlotPoints -> 35]
SetOptions[Graphics3D, AspectRatio -> Automatic]

SetOptions[ParametricPlot, AspectRatio -> Automatic]
SetOptions[ParametricPlot3D, Axes -> None]

Needs["ProgrammingInMathematica‘Options*"]
SetAllOptions[ColorOutput -> GrayLevel]

$DefaultFont = {"Times-Roman", 9.0} (* font in graphics *)
SetOptions["stdout", PageWidth->56] (* line width *)

init.m: Mathematica initialization for this book.

The manuscript is written in I&TgX [40] (with many custom macros). It contains only the input
of the sample computations. The results were computed by Mathematica and were inserted

About This Book Xix

automatically into the file. The bibliography was produced with BIBTgX [59], and the index
was sorted with makeindex [41]. Those figures not produced with Mathematica were designed
with FrameMaker and included in PostScript form. The reproductions of Notebooks and help

screens were taken from the computer’s screen. Finally, the output of IATEX was converted
into PostScript and phototypeset.

XX

_About This Book

lgx logarithm to base 2, log,

logz natural logarithm (base e)
gcd(a,b) greatest common divisor

albd a divides b

amod b remainder when a is divided by b
a div b integer part of the quotient a /b
sign x sign of x

n! n factorial, n! =n(n — I)(n —2)---1; 0! =1
N set of nonnegative integers {0, 1,2,...}
4 ring of integers {0, +1,+2,...}
z, residue classes modulo p

R field of real numbers

C field of complex numbers

i imaginary unit, i = v/—1

L] largest integer < r

[7] smallest integer > r

TRy approximate equality of z and y
m(x) number of primes < x

at transpose of matrix a

VW dot product of vectors v and w
a®b outer product of tensors a and b
divo divergence of vector field v

grad s gradient of scalar field s

V2s Laplace operator, V2s = div grad s
Zldi total derivative w.r.t. =

?9% partial derivative w.r.t. T

Ty mapping of z to y

Az.t(z) lambda expression (pure function)
[z — ale substitution of x by a in e

PAg p AND ¢

pVgq PORg

p—q p implies ¢

rus union of sets r and s

rns intersection of sets r and s

r—s difference of sets r and s

rXs join of relations r and s

Mathematical Notation Used in This Book.

Contents

Preface ix
About This Book . Xiii
1 Computers and Science
1.1 From Problems to Programs 3
1.2, COMPULETS: & « = = & = & & & s 5 & @ o & o & 6 & o o w0 o 0 o o= U4
1.3 Programming Languages 18
1.4 Computer Science 23
2 Mathematica’s Programming Language
2.1 Arithmeticand Logic 2]
22 Definitions . : o 5 5 o 5 = « & 5 @ % & 5 5 5 owmow @ & s o5 oo owow o 30
2.3 Simple Program Structures 34
2.4 Structure of Expressions 44
2.5 HelpwithProblems 4
2.6 EXercises e e e e oo 52
3 Iteration and Recursion
3.1 The Greatest Common Divisor 57
32 The3z+1Problem. 60
3.3 Advanced Topic: Loop Invariants 04
3.4 Application: Differential Equations 09
35 BXEICISES . - . « = m o o s a s o mE 5 5 e s om o w s s e e ow e SO
4 Structure of Programs
4.1 Complex Parametric Lines &8l
42 TheFirstPackage « . « . . . o o o oo 85
43 Optional Arguments 90
44 A Template Packageo 94
4.5 EXEICISES . . .+ « o o e e e e e 906
5 Abstract Data Types
5.1 Definition of Abstract Data Types « « « « « « o . o .99
5.2 Example: Modular Numberso 102
5.3 Design of Abstract Data Types 106
54 EXErcises « « o o i e e e e e e e e e o110

vi

10

11

12

Algorithms for Searching and Sorting

6.1
6.2
6.3
6.4

Searching Ordered Data .
Sorting Data

Binary Trees

Exercises .

Complexity of Algorithms

7.1
72
7.3
7.4
7.5

Complexity of Computations

Example: Computing the nth Flbonacm Number

Special Topic: Dynamic Programming

Long-Integer Arithmetic and Fast Multiplication

Exercises .

Operations on Vectors and Matrices

8.1
8.2
8.3
8.4
8.5
8.6

Vectors and Matrices
Inner and Outer Products
Linear Algebra

Programs with Arrays .
Application: Aggregation
Exercises .

List Processing and Recursion

9.1
9.2
9.3

Symbolic Expressions and Lists .
List Processing
Exercises .

Rule-Based Programming

10.1
10.2
10.3
10.4
10.5

Functions

11.1
11.2
11.3
11.4

Pattern Matching .

Rules and Term Rewriting : ;
Simplification Rules and Normal Forms .
Application: Trigonometric Simplifications
Exercises .

A Notation for Functions (A Calculus)
Functions as Values . .
Example: Simulation of Shift Reglsters .
Exercises .

Theory of Computation

12.1
12.2
12.3
12.4
12.5

Computable Functions
Models of Computation
Turing Machines .

Recursive Functions Are Turmg Computable ;

Exercises .

Contents

115
121
129
138

143
147
156
162
167

171
175
185
194
202
207

213
217
223

227
231
235
241
248

255
260
266
268

273
280
282
293
299

Contents

13 Databases

13:1
13.2
13.3
13.4
13.5

Database Design .
Relational Databases
Data Entry and Queries
Commercial Databases
Exercises .

14 Object-Oriented Programming

14.1
14.2
14.3
14.4
14.5

Introduction .

Example: Bank Accounts .
Principles of Object-Oriented Programmmg
Application: Collections .

Exercises .

Appendix A Further Reading

Al
A2

A Guide to the Literature
References

Appendix B More Information About Mathematica

B.1
B.2
B.3
B.4

Index

Computations You Can Do with Mathematica
The Code for the Illustrations in this Book .
Mathematica’s Evaluation Method .

Syntax of Operators

vii

303
308
314
319
321

325
327
330
332
341

