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Preface

This work is essentially an extensive revision of my Ph.D. dissertation, [1]. It
is primarily a research document on the application of probability theory to the
parameter estimation problem. The people who will be interested in this material
are phys.icists, economists, and engineers who have to deal with data on a daily basis;
consequently, we have included a great deal of introductory and tutorial material. Any
person with the equivalent of the mathematics background required for the graduate-
level study of physics should be able to follow the material contained in this book,
though not without effort.

From the time the dissertation was written until now (approximately one year)
our understanding of the parameter estimation problem has changed extensively. We
have tried to incorporate what we have learned into this book.

I am indebted to a number of people who have aided me in preparing this docu-
ment: Dr. C. Ray Smith, Steve Finney, Juana Sunchez, Matthew Self, and Dr. Pat
Gibbons who acted as readers and editors. In addition, I must extend my deepest
thanks to Dr. Joseph Ackerman for his support during the time this manuscript was
being prepared.

Last, I am especially indebted to Professor E. T. Jaynes for his assistance and
guidance. Indeed it is my opinion that Dr. Jaynes should be a coauthor on this work,
but when asked about this, his response has always been “Everybody knows that
Ph.D. students have advisors.” While his statement is true, it is essentially irrele-
vant; the amount of time and effort he has expended providing background material,
interpretations, editing, and in places, writing this material cannot be overstated,

and he deserves more credit for his effort than an “Acknowledgment.”

St. Louis, Missouri, 1988 G. Larry Bretthorst
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Chapter 1
INTRODUCTION

Experiments are performed in three general steps: first, the experiment must be
designed; second, the data must be gathered; and third, the data must be analyzed.
These three steps are highly idealized, and no clear boundary exists between them.
The problem of analyzing the data is one that should be faced early in the design
phase. Gathering the data in such a way as to learn the most about a phenomenon
is what doing an experiment is all about. It will do an experimenter little good to
obtain a set of data that does not bear directly on the model, or hypotheses, to be
tested.

In many experiments it is essential that one does the best possible job in analyzing
the data. This could be true because no more data can be obtained, or one is trying to
discover a very small effect. Furthermore, thanks to modern computers, sophisticated
data analysis is far less costly than data acquisition, so there is no excuse for not doing
the best job of analysis that one can.

The theory of optimum data analysis, which takes into account not only the raw
data but also the prior knowledge that one has to supplement the data, has been in
existence — at least, as a well-formulated program — since the time of Laplace. But
the resulting Bayesian probability theory (i.e., the direct application of probability
theory as a method of inference) using realistic models has been little applied to
spectral estimation problems and in science in general. Consequently, even though
probability theory is well understood, its application and the orders of magnitude
improvement in parameter estimates that its application can bring, are not. We hope
to show the advantage of using probability theory in this way by developing a little
of it and applying the results to some real data from physics and economics.

The basic model we are considering is always: we have recorded a discrete data
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set D = {dy,---,dn}, sampled from y(t) at discrete times {¢;,---,tn}, with a model
equation
d; = y(t;) = f(t) + e, (1<i<N)

where f(t;) is the signal and e; represents noise in the problem. Different models
correspond to different choices of the signal f(t). The most general model we will
analyze will be of the form

f(t) = B;Gj(t, {w}).

=1
The model functions, G(t, {w}), are functions of other parameters {w,, - - -, w,} which
we label collectively {w} (these parameters might be frequencies, chirp rates, decay
rates, the time of some event, or any other quantities one could encounter).

We have not assumed the time intervals to be uniform, nor have we assumed
the data to be drawn from some stationary Gaussian process. Indeed, in the most
general formulation of the problem such considerations will be completely irrelevant.
In the traditional way of thinking about this problem, one imagines that the data
are one sample drawn from an infinite population of possible samples. One then uses
probability only for the distribution of possible samples that could have been drawn
— but were not. Instead, what we will do is to concentrate our attention on the actual
data obtained, and use probability to make the “best” estimate of the parameters;
i.e. the values that were realized when the data were taken.

We will concentrate on the {w} parameters, and often consider the amplitudes
{B} as nuisance parameters. The basic question we would like to answer is: “What
are the best estimates of the {w} parameters one can make, independent of the
amplitudes { B} and independent of the noise variance?” We will solve this problem
for the case where we have little prior information about the amplitudes { B}, the {w}
parameters, and the noise. Because we incorporate little prior information into the
problem beyond the form of the model functions, the estimates of the amplitudes { B}
and the nonlinear {w} parameters cannot differ greatly from the estimates one would
obtain from least squares or maximum likelihood. n However, using least squares
or maximum likelihood would require us to estimate all parameters, interesting and
non-interesting, simultaneously; thus one would have the computational problem of
finding a global maximum in a space of high dimensionality.

By direct application of probability theory we will be able to remove the uninter-
esting parameters and see what the data have to tell us about the interesting ones,

reducing the problem to one of low dimensionality, equal to the number of interesting
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parameters. In a typical “small” problem this might reduce the search dimensions
from ten to two; in one “large” problem the reduction was from thousands to six
or seven. This represents many orders of magnitude reduction in computation, the
difference between what is feasible, and what is not.

Additionally, the direct application of probability theory also tells us the accuracy
of our estimates, which direct least squares does not give at all, and which maximum
likelihood gives us only by a different calculation (sampling distribution of the esti-
mator) which can be more difficult than the high-dimensional search one — and even
then refers only to an imaginary class of different data sets, not the specific one at
hand.

In Chapter 2, we analyze a time series which contains a single stationary harmonic
signal plus noise, because it contains most of the points of principle that must be
faced in the more general problem. In particular we derive the probability that a
signal of frequency w is present, regardless of its amplitude, phase, and the variance
of the noise. We then demonstrate that the estimates one obtains using probability
theory are a full order of magnitude better than what one would obtain using the
discrete Fourier transform as a frequency estimator. This is not magic; we are able
to understand intuitively why it is true, and also to show that probability theory has
built-in automatic safety devices that prevent it from giving overoptimistic accuracy
claims. In addition, an example is given of numerical analysis of real data illustrating
the calculation.

In Chapter 3, we discuss the types of model equations used, introduce the con-
cept of an orthonormal model, and derive a transformation which will take any
nonorthonormal model into an orthonormal one. Using these orthonormal models,
we then remove the simplifying assumptions that were made in Chapter 2, generalize
the analysis to arbitrary model equations, and discuss a number of surprising features
to illustrate the power and generality of the method, including an intuitive picture of
model fitting that allows one to understand which parameters probability theory will
estimate and why, in simple terms.

In Chapter 4 we calculate a number of posterior expectation values including the
first and second moments, define a power spectral density, and we devise a procedure
for estimating the nonlinear {w} parameters.

In Chapter 5 we turn our attention to the problem of selecting the “best” model of
a process. Although this problem sounds very different from the parameter estimation

problem, it is essentially the same calculation. Here, we compute the relative posterior
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probability of a model: this allows one to select the most probable model based on
how well its parameters are estimated, and how well it fits the data.

In Chapter 6, we specialize the discussion to spectral estimates and, proceeding
through stages, investigate the one-stationary-frequency problem and explicitly cal-
culate the posterior probability of a simple harmonic frequency independent of its
amplitude, phase and the variance of the noise, without the simplifying assumptions
made in Chapter 2.

At that point we pause briefly to examine some of the assumptions made in the cal-
culation and show that when these assumptions are violated by the data, the answers
one obtains are still correct in a well-defined sense, but more conservative in the sense
that the accuracy estimates are wider. We also compare uniform and nonuniform time
sampling and demonstrate that for the single-frequency estimation problem, the use
of nonuniform sampling intervals does not affect the ability to estimate a frequency.
However, for apparently randomly sampled time series, aliases effectively do not exist.

We then proceed to solve the one-frequency-with-Lorentzian-decay problem and
discuss a number of surprising implications for how decaying signals should be sam-
pled. Next we examine the two stationary frequency problem in some detail, and
demonstrate that (1) the ability to estimate two close frequencies is essentially in-
dependent of the separation as long as that separation is at least one Nyquist step
|wy — wy| > 27 /N; and (2) that these frequencies are still resolvable at separations
corresponding to less than one half step, where the discrete Fourier transform shows
only a single peak.

After the two-frequency problem we discuss briefly the multiple nonstationary
frequency estimation problem. In Chapter 3 Eq. (3.17) we derive the joint posterior
probability of multiple stationary or nonstationary frequencies independent of their
amplitude and phase and independent of the noise variance. Here we investigate
some of the implications of these formulas and discuss the techniques and procedures
needed to apply them effectively.

In Chapter 7, we apply the theory to a number of real time series, including Wolf’s
relative sunspot numbers, some NMR (nuclear magnetic resonance) data containing
multiple close frequencies with decay, and to economic time series which have large
trends. The most spectacular results obtained to date are with NMR data, because
here prior information tells us very accurately what the “true” model must be.

Equally important, particularly in economics, is the way probability theory deals

with trend. Instead of seeking to eliminate the trend from the data (which is known to
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introduce spurious artifacts that distort the information in the data), we seek instead
to eliminate the effect of trend from the final conclusions, leaving the data intact. This
proves to be not only a safer, but also a more powerful procedure than detrending
the data. Indeed, it is now clear that many published economic time series have been
rendered nearly useless because the data have been detrended or seasonally adjusted
in an irreversible way that destroys information which probability theory could have
extracted from the raw, unmutilated data.

In the last example we investigate the use of multiple measurements and show that
probability theory can continue to obtain the standard y/n improvement in parameter
estimates under much wider conditions than averaging. The analyses presented in
Chapter 7 will give the reader a better feel for the types of applications and complex

phenomena which can be investigated easily using Bayesian techniques.

1.1 Historical Perspective

Comprehensive histories of the spectral analysis problem have been given recently
by Robinson [2] and Marple [3]. We sketch here only the part of it that is directly
ancestral to the new work reported here. The problem of determining a frequency
in time sampled data is very old; the first astronomers were trying to solve this
problem when they attempted to determine the length of a year or the period of the
moon. Their methods were crude and consisted of little more than trying to locate
the maxima or the nodes of an approximately periodic function. The first significant
advance in the frequency estimation problem occurred in the early nineteenth century,
when two separate methods of analyzing the problem came into being: the use of
probability theory, and the use of the Fourier transform.

Probabilistic methods of dealing with the problem were formulated in some gen-
erality by Laplace [4] in the late 18th century, and then applied by Legendre and
Gauss [5] [6] who first used (or at least first published) the method of least squares
to estimate model parameters in noisy data. In this procedure some idealized model
signal is postulated and the criterion of minimizing the sum of the squares of the
“residuals” (the discrepancies between the model and the data) is used to estimate
the model parameters. In the problem of determining a frequency, the model might
be a single cosine with an amplitude, phase, and frequency, contaminated by noise

with an unknown variance. Generally one is not interested in the amplitude, phase,
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or noise variance; ideally one would like to formulate the problem in such a way that
only the frequency remains, but this is not possible with direct least squares, which
requires us to fit all the model parameters. The method of least squares may be
difficult to use in practice; in principle it is well understood. In the case of Gaussian
noise, the least squares estimates are simply the parameter values that maximize the
probability that we would obtain the data, if a model signal was present with those
parameters.

The spectral method of dealing with this problem also has its origin in the early
part of the nineteenth century. The Fourier transform is one of the most powerful tools
in analysis, and its discrete analogue is by definition the spectrum of the time sampled
data. How this is related to the spectrum of the original time series is, however,
a nontrivial technical problem whose answer is different in different circimstances.
Using the discrete Fourier transform of the data as an estimate of the “true” spectrum
is, intuitively, a natural thing to do: after all, the discrete Fourier transform is the
spectrum of the noisy time sampled series, and when the noise goes away the discrete
Fourier transform is the spectrum of the sampled “true” series, but calculating the
spectrum of a series and estimating a frequency are very different problems. One of
the things we will attempt to do is to do is to exhibit the exact conditions under
which the discrete Fourier transform is an optimal frequency estimator.

With the introduction (or rather, rediscovery [7], [8], [9]) of the fast Fourier
transform by Cooley and Tukey [10] in 1965 and the development of computers, the
use of the discrete Fourier transform as a frequency and power spectral estimator
has become very commonplace. Like the method of least squares, the use of discrete
Fourier transform as a frequency estimator is well understood. If the data consist of a
signal plus noise, then by linearity the Fourier transform will be the signal transform
plus a noise transform. If one has plenty of data the noise transform will be, usually, a
function of frequency with slowly varying amplitude and rapidly varying phase. If the
peak of the signal transform is larger than the noise transform, the added noise does
not change the location of the peak very much. One can then estimate the frequency
from the location of the peak of the data transform, as intuition suggests.

Unfortunately, this technique does not work well when the signal-to-noise ratio of
the data is small; then we need probability theory. The technique also has problems
when the signal is other than a simple harmonic frequency: then the signal has some
type of structure [for example Lorentzian or Gaussian decay, or chirp: a chirped signal

has the form cos(8 + wt + at?)]. The peak will then be spread out relative to a simple
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harmonic spectrum. This allows the noise to interfere with the parameter estimation
problem much more severely, and probability theory becomes essential. Additionally,
the Fourier transform is not well defined when the data are nonuniform in time, even
though the problem of frequency estimation is not essentially changed.

Arthur Schuster [11] introduced the periodogram near the beginning of this cen-
tury, merely as an intuitive ad hoc method of detecting a periodicity and estimating
its frequency. The periodogram is essentially the squared magnitude of the discrete

Fourier transform of the data D = {d;,dz,---,dn} and can be defined as

N

C(w) = T [RW) +1w)] = S die ol (1.1)
where R(w), and I(w) are the real and imaginary parts of the sum [Eqgs. (2.4), and
(2.5) below], and N is the total number of data points. The periodogram remains
well defined when the frequency w is allowed to vary continuously or when the data
are nonuniform. This avoids one of the potential drawbacks of using this method but
does not aid in the frequency estimation problem when the signal is not stationary.
Although Schuster himself had very little success with it, more recent experience has
shown that regardless of its drawbacks, indeed the discrete Fourier transform or the
periodogram does yield useful frequency estimates under a wide variety of conditions.
Like least squares, Fourier analysis alone does not give an indication of the accuracy
of the estimates of spectral density, although the width of a sharp peak is suggestive
of the accuracy of determination of the position of a very sharp line.

In the 160 years since the introduction of the spectral and probability theory
methods no particular connection between them had been noted, yet each of these
methods seems to function well in some conditions. That these methods could be very
closely related (from some viewpoints essentially the same) was shown when Jaynes
[12] derived the periodogram directly from the principles of probability theory and
demonstrated it to be, a “sufficient statistic” for inferences about a single station-
ary frequency or “signal” in a time sampled data set, when a Gaussian probability
distribution is assigned for the noise. That is, starting with the same probability dis-
tribution for the noise that had been used for maximum likelihood or least squares,
the periodogram was shown to be the only function of the data needed to make es-
timates of the frequency; i.e. it summarizes all the information in the data that is
relevant to the problem.

In this work we will continue the analysis started by Jaynes and show that when

the noise variance 0% is known, the conditional posterior probability density of a
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frequency w given the data D, the noise variance 02, and the prior information I is
simply related to the periodogram:

P(w|D, o, 1) exp{cf:)}. (1.2)

Thus, we will have demonstrated the relation between the two techniques. Because
the periodogram, and therefore the Fourier transform, will have been derived from
the principles of probability theory we will be able to see more clearly under what
conditions the discrete Fourier transform of the data is a valid frequency estimator
and the proper way to extract optimum estimates from it. Also, from (1.2) we will
be able to assess the accuracy of our estimates, which neither least squares, Fourier
analysis, nor maximum likelihood give directly.

The term “spectral analysis” has been used in the past to denote a wider class of
problems than we shall consider here; often, one has taken the view that the entire
time series is a “stochastic process” with an intrinsically continuous spectrum, which
we seek to infer. This appears to have been the viewpoint underlying the work of
Schuster, and of Blackman-Tukey noted in the following sections. For an account of
the large volume of literature on this version of the spectral estimation problem, we
refer the reader to Marple [3].

The present work is concerned with what Marple calls the “parameter estimation
method”. Recent experience has taught us that this is usually a more realistic way
of looking at current applications; and that when the parameter estimation approach
is based on a correct model it can achieve far better results than can a “stochastic”
approach, because it incorporates cogent prior information into the calculation. In
addition, the parameter estimation approach proves to be more flexible in ways that
are important in applications, adapting itself easily to such complicating features as

chirp, decay, or trend.

1.2 Method of Calculation

The basic reasoning used in this work will be a straightforward application of
Bayes’ theorem: denoting by P(A|B) the conditional probability that proposition A

is true, given that proposition B is true, Bayes’ theorem is

P(H|I)P(D|H, I)
T A (1.3)

P(H|D,T) =
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It is nothing but the probabilistic statement of an almost trivial fact: Aristotelian

logic is commutative. That is, the propositions
HD = “Both Hand D are true”

DH = “Both D and H are true”

say the same thing, so they must have the same truth value in logic and the same
probability, whatever our information about them. In the product rule of probability

theory, we may then interchange H and D
P(H,D|I)= P(D|I)P(H|D,I)= P(H|I)P(D|H,I)

which is Bayes’ theorem. In our problems, H is any hypothesis to be tested, D is
the data, and I is the prior information. In the terminology of the current statisti-
cal literature, P(H|D,I) is called the posterior probability of the hypothesis, given
the data and the prior information. This is what we would like to compute for sev-
eral different hypotheses concerning what systematic “signal” is present in our data.
Bayes’ theorem tells us that to compute it we must have three terms: P(H|I) is the
prior probability of the hypothesis (given only our prior information), P(D|I) is the
prior probability of the data (this term will always be absorbed into a normalization
constant and will not change the conclusions within the context of a given model,
although it does affect the relative probabilities of different models) and P(D|H,I) is
called the direct probability of the data, given the hypothesis and the prior informa-
tion. The direct probability is called the “sampling distribution” when the hypothesis
is held constant and one considers different sets of data, and it is called the “likelihood
function” when the data are held constant and one varies the hypothesis. Often, a
prior probability distribution is called simply a “prior”.

In a specific Bayesian probability calculation, we need to “define our model”; i.e.
to enumerate the set { Hy, H,,--} of hypotheses concerning the systematic signal in
the model, that is to be tested by the calculation. A serious weakness of all Fourier
transform methods is that they do not consider this aspect of the problem. In the
widely used Blackman-Tukey [13] method of spectrum analysis, for example, there
is no mention of any model or any systematic signal at all. In the problems we are
considering, specification of a definite model (i.e. stating just what prior information
we have about the phenomenon being observed) is essential; the information we can

extract from the data depends crucially on which model we analyze.



