Second Edition

MACHINE~-
INDEPENDENT
ORGANIC SOFTWARE
TOOLS (MINT)

M.D. Godfrey, D.F. Hendry
H.J. Hermans, R.K.Hessenberg

8063498

B

E8053498

MACHINE-INDEPENDENT
ORGANIC SOFTWARE TOOLS
(MINT)

M.D. Godfrey

Sperry Univac, Blue Bell, Pennsylvania

D.F. Hendry

Computer Science Department, California Institute of Technology

H.J. Hermans

Sperry Univac, Blue Bell, Pennsylvania

R.K. Hessenberg

Micronology Ltd, London

2nd Edition

1982

@ ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers
London New York

Paris San Diego San Francisco

Sé&o Paulo Sydney Tokyo Toronto

ACADEMIC PRESS INC. (LONDON) LTD.
24/28 Oval Road
London NW1

United States Edition published by
ACADEMIC PRESS INC.
111 Fifth Avenue
New York, New York 10003

Copyright © 1982 by
ACADEMIC PRESS INC. (LONDON) LTD.

First edition published 1980

UNIVAC and SPERRY UNIVAC are registered trademarks of
SPERRY CORPORATION, New York, N.Y., USA

All Rights Reserved
No part of this book may be reproduced in any form by photostat, microfilm, or any other
means, without written permission from the publishers

British Library Cataloguing in Publication Data

Machine-independent organic software tools.—2nd ed.
1. MINT (Computer programs)
I. Godfrey, M.D.
001.64'25 QA76.6

ISBN 0-12-286982-6

Printed in Great Britain by
Whitstable Litho Ltd, Whitstable, Kent

* MACHINE-INDEPENDENT
ORGANIC SOFTWARE TOOLS

Preface to the Second Edition

This edition is different from the first edition in two substantial
ways. First, several corrections have been made. The most
significant of these is the correction of the operation diagram for
DICMATCH which appeared on page 202. The other corrections are
all minor, being either typographical or obvious. The second
difference is the introduction of several improved or new
components. The significant improvements are: the INCH primitive
which replaces GETSTR, a new virtual memory arrangement which
permits use of 64K words of virtual memory and permits more
efficient allocation of object text, a new portable format which is
more compact and which is checksum and sequence checked,
consolidation of the OPENXF primitives into the one new primitive
OPENF, and provision of more powerful and selective diagnostics at
the virtual machine level. These changes will not cause substantial
incompatibility with respect to current source text. Where
appropriate, routines are provided which allow continued operation
of old constructs, such as a function GETSTR which uses INCH. In
other cases, obvious changes should be made in source text which is
based on the First Edition.

Chapter 12 has been expanded to include both MINT techniques
and examples. Chapter 15 now contains a description of the MINT
implementation on an Apple-II system instead of the Intel 8080
implementation.

During the period since the first edition we have benefitted
substantially from discussions with and contributions from R. N.
Riess. In particular, he contributed the EMULATE primitive which
is described in Chapter 6.

This edition has been produced by the Sperry Univac COMADS
system, as was the first edition. Thus, the process of production of
the new edition was to write the new text, edit it into the first edition
files, apply the usual spelling checking and analysis tests, run proof
copy, correct and run final camera-ready copy. It is again a pleasure
to acknowledge the help of Richard H. Acquard who is responsible

vi Preface to the Second Edition

for the COMADS language processor. In addition, Paul J. Pontinen,
who has responsibility for the implementation of COMADS on the
COMp 80 microfilm processor, has been particularly helpful in
providing additional processing capabilities. These enhancements
have improved the appearance of the result, and the ease of its
production.

We have been pleased by the reactions of readers during the
two years since the publication of the first edition. There have been
numerous requests for copies of the system. We have found in
practice that most potential users can accept the system on
ANSI-format magnetic tape. Due to the problems of formats of
cassettes and floppy disks, and our own access to facilities, we have
had to restrict availability to magnetic tape, a floppy disk suitable
for bootstrap loading into an Apple-II+ system, or, in special cases,
transmission over communication lines.

Michael D. Godfrey
June 1982

Preface to the First Edition

The tools described in this monograph are intended to improve
the efficiency of computer use and increase the value of the written
instructions (termed software) which control the operation of
computing machines. This is achieved through sirnplification and
generalization of basic constructs, and through separation of the
written software from the machines on which the software may
operate.

It is intended that this monograph serve several purposes.
First, it represents a complete summary of a body of research and
development which has been underway since the late 1960’s. Second,
the content and level of presentation are such that the text may be
used for advanced undergraduate or graduate courses in design and
implementation of languages, virtual machines, or simple stack
based processors. In addition, the text contains information which
should be of interest to professional software writers or system
designers. The example implementations of the system can be used
as trial implementations for study, or may be used as the basis for
production application implementations. In practice, these tools
have been found to be highly effective for a wide range of
applications on machines of widely differing structure. We hope that
this monograph will help others to make effective practical use of
these tools and techniques.

Until recently these tools were called the SNIBBOL system.
While SNIBBOL is as good a name as any other (better than most
we could think of), confusion with SNOBOL and other possible
misleading associations led us to change the name to MINT
(Machine-INdependent Organic Software Tools).

MINT has been put to practical use at several places. This
practical use has been essential to the development of the system
and, we hope, productive in its own right. The initial development
of MINT took place in the early 1970’s while D. F. Hendry was at
the University of London Institute for Computer Science. MINT was

viii Preface to the First Edition

used there as a part of the M.Sc. course. Many further uses have
occurred in more recent years. We are aware of MINT
implementations for about ten different computer systems.

Many users of MINT are known to the authors. Many of these
have contributed significantly to further development of the system.
We would like to acknowledge this help even though it is not feasible
to list all the individuals who have made such contributions.

D. F. Hendry has been responsible for most of the basic concepts
of MINT as it exists today. The current compiler implementation
was created by Hendry. Initially R. K. Hessenberg tested and
corrected the compiler, as well as contributing helpful insights and
improvements. Subsequently, the compiler has been modified and
extended by H. J. Hermans and M. D. Godfrey. Hessenberg and
Hendry wrote the initial version of the Sperry Univac Series 1100
interpreter (described in Chapter 16) with some help from Godfrey,
who has subsequently modified and extended the implementation.
Hermans wrote the Intel 8080 interpreter which is described in
Chapter 15. An initial MINT manual was prepared by Hendry and
Hessenberg. That manual was extensively used in the preparation
of Chapters 2 through 11 and Chapter 13 of the present monograph.
The completion of the monograph in its present form has been
carried out by Godfrey and Hermans.

This entire text, including all Tables and Figures, was prepared
by means of a Sperry Univac computer-based documentation system
(COMADS). It is hoped that the text reflects the quality of this
system. The system greatly facilitated the writing task, as many
time-consuming activities, such as proof-reading, were carried out
by the computer. The fact that the entire document is stored in the
computer has allowed use of the actual source files where language
text is given. Thus, all such text has been processed as source text
by the MINT system, and therefore checked for correctness. The use
of computer-based tools did not completely remove the need for
human assistance. Specifically, Richard H. Acquard has been
extremely helpful in giving advice and providing support concerning
the operation of the COMADS system.

This monograph is unusual in that the complete source text of
the system (compiler, virtual machine, syntax analyzer, other text,
and examples) are given. This demonstrates the compactness and
readability of the system. By agreement with Academic Press Inc.
(London) Ltd. the authors retain the copyright of this
machine-readable source text.

Preface to the First Edition ix

Copies of the system in machine-readable form may be obtained
by writing to me. When such a request is made, it is essential to
state the required medium from the following choices:

1. Industry standard magnetic tape, 9-track, 1600 bpi, ASCII
coded card images.

2. Standard cassette tape, ASCII coded images.

3. Another recording device which has a standard RS-232C
interface. In this case the recipient must provide the
recording device and the recording medium.

There will be a charge made in order to cover the cost of copying.

Michael D. Godfrey
May 1980

Contents

80€3498

Preface to the Second Edition

Preface to the First Edition
1. The MINT System

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.
1.10.
1.11.
1.12.

Introduction

Scope

Purpose

Background

MINT Functional Structure
Organic Programming
The Dictionary
Uniformity
Compactness

Storage Organization
The Virtual Machine
Introductory Examples

2. MINT Language Components

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.

Introduction

Definitions

Identifiers

Internal Compiler Identifiers
Constants

Diagnostics

Problems

3. Program Listing Control

3.1.
3.2.

Introduction
Listing Options

vii

XTI WN ==

16
16
22
31
32
36
38

40
40

xii

3.3.
3.4.
3.5.

Contents

Comments and Pagination
The TITLE Directive
Problems

MINT System Structure

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

Introduction

Basics of the VM(M) Virtual Machine

Compiler Operation

Compiler States and Data Declarations

MINT Expressions
Precedence
Problems

The Macro Facility

5.1. Introduction

5.2. Macro Bodies

5.3. Macro Parameters

54. MINT System Macros

5.5. Some Additional Macros

5.6. Problems

Basic MINT Constructs

6.1. Introduction

6.2. VSTORE Referencing

6.3. Operand Stack Management
6.4. Control Transfer

6.5. Conditional Selection and Iteration
6.6. Miscellaneous Constructs

6.7. Problems

Functions

7.1. Introduction

7.2. Identified Functions

7.3. Anonymous Functions

7.4. Miscellaneous Compiler Functions
7.5. Summary of Compiler Functions
7.6. Problems

41
41
42

43
43
45
46
48
51
58

60
60
60
61
63
64

65
65
69
71
72
77
82

85
85
90
94
95
97

10.

11.

Contents

Directives and Immediate Execution

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.

Introduction

Input Parameters for Directives (IPAR)
Referencing Directives as Functions
Immediate Execution

The Class Directive

Miscellaneous Directives

Summary of Compiler Directives
Problems

Lists and Free-Space Management

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.

Introduction

Basic List Structure

Adding to and Removing from a List
Free-Space Management

Item Lists

Record Lists

The Compiler Dictionary List
Problems

The External and String Operators

10.1.
10.2.
10.4
10.4.
10.5.
10.6.
10.7.
10.8.
10.9.
10.10.
10.11.

Introduction

MINT String Format
Initialization of External Segments
Input Facilities

Compiler Input Facilities
Output Facilities

Compiler Output Facilities
Closing of Segments

The String Matching Primitives
The COMPILE Function
Problems

The Syntax Analysis System

11.1.
11.2,
11.3.

Introduction
Phrase Structure Analysis
Parsing Functions

xiii

98

98
100
100
101
102
104
105

106
106
107
108
109
111
113
115

117
117
118
120
122
126
127
131
131
132
133

135
135
138

xiv

12.

13.

14.

15.

Contents

11.4. Optional Elements
11.5. Phrase Function Usage
11.6. Listing of M-TRAN

MINT Techniques and Examples

12.1. Introduction

12.2. Entering Text

12.3. Translation and Manipulation of Text
12.4. Analysis and Diagnostic Techniques
12.5. A Simple Calculator

12.6. Text Editing Directives

12.7. Instruction Execution Analysis

The VM(M) Virtual Machine

13.1. Introduction

13.2. The Virtual Machine Architecture

13.3. Virtual Machine Object Text Format
13.4. Loading the Virtual Machine

13.5. The Virtual Machine Instruction Set
13.6. Summary of Virtual Machine Primitives

The Distributed MINT System

14.1. Introduction

14.2. Virtual Machine Diagnostics

14.3. The Compiler Object File

14.4. Additional Source Text Files

14.5. Character Pair Reversal in Strings

14.6. Compiler Creation and Source Structure
14.7. System Generation Sequences

The Apple-II Implementation

15.1. Introduction

15.2. The MC6502 Assembler

15.3. The MC6502 Emulator

15.4. The MC6502 Virtual Machine Interpreter
15.5. The File System

15.6. Creation of Apple-II Routines

139
140
140

143
143
143
144
147
149
160

165
165
167
168
171
230

231
231
234
235
235
235
241

242
243
258
270
289
290

Contents

16. The Sperry Univac 1100 Implementation

16.1.
16.2.
16.3.
16.4.

Introduction

Design

Implementation

Use of MINT on the 1100 System

Appendix: Auto-Compiler Listing

Subject Index

Xv

292
292
294
303

308

365

8063493

The love of economy is the root of all virtue.
G. B. Shaw

1. The MINT System

1.1. Introduction

The MINT system is a set of tools to facilitate communication
with, and operation of, computers. These tools provide a high level
software environment which is machine-independent and
open-ended. The machine-independence implies that the MINT
system, and MINT based applications, are readily portable to many
machines. The open-endedness implies considerable flexibility in
altering or extending the language facilities. The language itself
allows sequences and expressions at as high or as low a level as is
desired.

MINT is implemented in terms of a Virtual Machine which
allows exactly the same (virtual) environment to exist regardless of
the actual machine on which the system is operating. This Virtual
Machine is referred to as the VM(M) Virtual Machine, and the
instructions which the Virtual Processor executes are the VM(M)
instruction set. Careful definition of this Virtual Machine
contributes to the portability, compactness, efficiency, and verifiable
correctness of the system.

1.2. Scope

The scope of MINT is very wide both in terms of machines on
which it may operate and in terms of potential applications. At
present MINT operates on such machines as the Apple-II and on
large general-purpose mainframe systems such as the Sperry Univac
Series 1100. Applications which have been written entirely in MINT
include a number of compilers and assemblers for both small and
large machines, language interpreters, a text editor, and interactive
dialogue systems. These implementations were all relatively low
cost in terms of development and implementation effort when
compared to similar efforts using conventional techniques. The

2 Machine-Independent Organic Software Tools

resulting programs are readable, and portable to any new machine.

In addition to its direct usefulness as a set of development and
implementation tools, MINT can be an effective means of
communication. MINT written text is precise, compact, and
readable. The MINT Virtual Machine is a simple and carefully
structured machine which displays the essential features of a
stack-based (or zero-address) machine architecture. Thus, the
MINT system provides an effective means of communication between
people, between machines, and between people and machines.

The emphasis on effectiveness of communication makes MINT
suitable for teaching computing principles and techniques. The
system may be used to teach or learn about stack-based architecture,
virtual machine design and implementation, compiling, macro
structure, parsing, and concepts and techniques of portability. In
this text we have not attempted a strict separation of these subjects.
This is because we feel that they are not reasonably separable. Much
of the effectiveness and interest in a system such as MINT derives
from the structural relationships of the components, rather than
from the components themselves. Thus, in this text, we have tried
to develop an understanding of how MINT fits together. This may
initially seem to impede learning, where compartmentalization is
always a strong temptation. However, we believe that the end result
will be found to be beneficial. The complete MINT system is more
significant than the sum of its parts.

1.3. Purpose

The purpose of MINT is to facilitate the analysis and
transformation of structured symbolic information. An example of
such analysis and transformation is a conventional language
compiler. Other examples include text-editing routines (such as
those given in Section 12.6) or interactive dialogue systems for
specific applications.

In order to satisfy a wide range of possible requirements, the
system is organized in the form of a set of general-purpose tools.
These tools may be used for many purposes, including the
development of new tools. The system itself is constructed by means
of the tools which it provides for general use. The open and
modifiable structure of the system is essential to its generality, and
allows a holistic approach to many problems which previously
required ad-hoc solution methods.

The MINT System 3

Due to its compact structure, MINT is well suited for use in
very small machines. An eight bit processor with 32K (here, and
throughout, K is used to mean 1024) bytes of storage is sufficient for
many purposes. However, the system also operates effectively on
large-scale systems.

The complete machine independence of the MINT language
permits the writing of systems which may have wide applicability
and permanent value.

1.4. Background

Historically, computing has developed from a primary interest
in the algorithms required for solution of numerical problems. The
earliest forms of computing were characterized by relatively large
algorithmic programs which operated on relatively small quantities
of data. As computing technology developed there was a tendency
to apply the tools which were developed for this structure to other,
often non-numerical, problems. At the same time, the volumes of
data, both numerical and symbolic, began to grow very rapidly. At
present it is frequently the case that the amounts of data to be
processed far exceed the size of the processing programs. Usually,
the purely numerical processing accounts for only a very small part
of the total. Thus, it is natural to question the basic structure of
current computing tools, based as they are on conditions which no
longer prevail. It is clear that if programs are used to process very
large quantities of data, the value of the program and the
importance of correctness of the program are increased. It is also
evident that much of the complexity of current computing derives
from the attempt to develop algorithms which express symbolic
transformations. Finally, the slow and cumbersome operation of
early computers provided the incentive for investment in improved
efficiency of program execution. Early programs were often
operated without substantial change for long periods. Thus,
substantial effort in writing and understanding the program could
be justified. The speed and flexibility of current computers imply
that the limiting factor in their productive use is the rate at which
information which is understood by humans can be precisely and
correctly communicated to and from the computing system.

These background considerations have led us to attempt to
develop new language tools which are based on the view that data
transformation is the fundamental task, and that machine

