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Preface to the Second Edition

This edition is different from the first edition in two substantial
ways. First, several corrections have been made. The most
significant of these is the correction of the operation diagram for
DICMATCH which appeared on page 202. The other corrections are
all minor, being either typographical or obvious. The second
difference is the introduction of several improved or new
components. The significant improvements are: the INCH primitive
which replaces GETSTR, a new virtual memory arrangement which
permits use of 64K words of virtual memory and permits more
efficient allocation of object text, a new portable format which is
more compact and which is checksum and sequence checked,
consolidation of the OPENXF primitives into the one new primitive
OPENF, and provision of more powerful and selective diagnostics at
the virtual machine level. These changes will not cause substantial
incompatibility with respect to current source text. Where
appropriate, routines are provided which allow continued operation
of old constructs, such as a function GETSTR which uses INCH. In
other cases, obvious changes should be made in source text which is
based on the First Edition.

Chapter 12 has been expanded to include both MINT techniques
and examples. Chapter 15 now contains a description of the MINT
implementation on an Apple-II system instead of the Intel 8080
implementation.

During the period since the first edition we have benefitted
substantially from discussions with and contributions from R. N.
Riess. In particular, he contributed the EMULATE primitive which
is described in Chapter 6.

This edition has been produced by the Sperry Univac COMADS
system, as was the first edition. Thus, the process of production of
the new edition was to write the new text, edit it into the first edition
files, apply the usual spelling checking and analysis tests, run proof
copy, correct and run final camera-ready copy. It is again a pleasure
to acknowledge the help of Richard H. Acquard who is responsible
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for the COMADS language processor. In addition, Paul J. Pontinen,
who has responsibility for the implementation of COMADS on the
COMp 80 microfilm processor, has been particularly helpful in
providing additional processing capabilities. These enhancements
have improved the appearance of the result, and the ease of its
production.

We have been pleased by the reactions of readers during the
two years since the publication of the first edition. There have been
numerous requests for copies of the system. We have found in
practice that most potential users can accept the system on
ANSI-format magnetic tape. Due to the problems of formats of
cassettes and floppy disks, and our own access to facilities, we have
had to restrict availability to magnetic tape, a floppy disk suitable
for bootstrap loading into an Apple-II+ system, or, in special cases,
transmission over communication lines.

Michael D. Godfrey
June 1982



Preface to the First Edition

The tools described in this monograph are intended to improve
the efficiency of computer use and increase the value of the written
instructions (termed software) which control the operation of
computing machines. This is achieved through sirnplification and
generalization of basic constructs, and through separation of the
written software from the machines on which the software may
operate.

It is intended that this monograph serve several purposes.
First, it represents a complete summary of a body of research and
development which has been underway since the late 1960’s. Second,
the content and level of presentation are such that the text may be
used for advanced undergraduate or graduate courses in design and
implementation of languages, virtual machines, or simple stack
based processors. In addition, the text contains information which
should be of interest to professional software writers or system
designers. The example implementations of the system can be used
as trial implementations for study, or may be used as the basis for
production application implementations. In practice, these tools
have been found to be highly effective for a wide range of
applications on machines of widely differing structure. We hope that
this monograph will help others to make effective practical use of
these tools and techniques.

Until recently these tools were called the SNIBBOL system.
While SNIBBOL is as good a name as any other (better than most
we could think of), confusion with SNOBOL and other possible
misleading associations led us to change the name to MINT
(Machine-INdependent Organic Software Tools).

MINT has been put to practical use at several places. This
practical use has been essential to the development of the system
and, we hope, productive in its own right. The initial development
of MINT took place in the early 1970’s while D. F. Hendry was at
the University of London Institute for Computer Science. MINT was



viii Preface to the First Edition

used there as a part of the M.Sc. course. Many further uses have
occurred in more recent years. We are aware of MINT
implementations for about ten different computer systems.

Many users of MINT are known to the authors. Many of these
have contributed significantly to further development of the system.
We would like to acknowledge this help even though it is not feasible
to list all the individuals who have made such contributions.

D. F. Hendry has been responsible for most of the basic concepts
of MINT as it exists today. The current compiler implementation
was created by Hendry. Initially R. K. Hessenberg tested and
corrected the compiler, as well as contributing helpful insights and
improvements. Subsequently, the compiler has been modified and
extended by H. J. Hermans and M. D. Godfrey. Hessenberg and
Hendry wrote the initial version of the Sperry Univac Series 1100
interpreter (described in Chapter 16) with some help from Godfrey,
who has subsequently modified and extended the implementation.
Hermans wrote the Intel 8080 interpreter which is described in
Chapter 15. An initial MINT manual was prepared by Hendry and
Hessenberg. That manual was extensively used in the preparation
of Chapters 2 through 11 and Chapter 13 of the present monograph.
The completion of the monograph in its present form has been
carried out by Godfrey and Hermans.

This entire text, including all Tables and Figures, was prepared
by means of a Sperry Univac computer-based documentation system
(COMADS). It is hoped that the text reflects the quality of this
system. The system greatly facilitated the writing task, as many
time-consuming activities, such as proof-reading, were carried out
by the computer. The fact that the entire document is stored in the
computer has allowed use of the actual source files where language
text is given. Thus, all such text has been processed as source text
by the MINT system, and therefore checked for correctness. The use
of computer-based tools did not completely remove the need for
human assistance. Specifically, Richard H. Acquard has been
extremely helpful in giving advice and providing support concerning
the operation of the COMADS system.

This monograph is unusual in that the complete source text of
the system (compiler, virtual machine, syntax analyzer, other text,
and examples) are given. This demonstrates the compactness and
readability of the system. By agreement with Academic Press Inc.
(London) Ltd. the authors retain the copyright of this
machine-readable source text.
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Copies of the system in machine-readable form may be obtained
by writing to me. When such a request is made, it is essential to
state the required medium from the following choices:

1. Industry standard magnetic tape, 9-track, 1600 bpi, ASCII
coded card images.

2. Standard cassette tape, ASCII coded images.

3. Another recording device which has a standard RS-232C
interface. In this case the recipient must provide the
recording device and the recording medium.

There will be a charge made in order to cover the cost of copying.

Michael D. Godfrey
May 1980
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The love of economy is the root of all virtue.
G. B. Shaw

1. The MINT System

1.1. Introduction

The MINT system is a set of tools to facilitate communication
with, and operation of, computers. These tools provide a high level
software environment which is machine-independent and
open-ended. The machine-independence implies that the MINT
system, and MINT based applications, are readily portable to many
machines. The open-endedness implies considerable flexibility in
altering or extending the language facilities. The language itself
allows sequences and expressions at as high or as low a level as is
desired.

MINT is implemented in terms of a Virtual Machine which
allows exactly the same (virtual) environment to exist regardless of
the actual machine on which the system is operating. This Virtual
Machine is referred to as the VM(M) Virtual Machine, and the
instructions which the Virtual Processor executes are the VM(M)
instruction set. Careful definition of this Virtual Machine
contributes to the portability, compactness, efficiency, and verifiable
correctness of the system.

1.2. Scope

The scope of MINT is very wide both in terms of machines on
which it may operate and in terms of potential applications. At
present MINT operates on such machines as the Apple-II and on
large general-purpose mainframe systems such as the Sperry Univac
Series 1100. Applications which have been written entirely in MINT
include a number of compilers and assemblers for both small and
large machines, language interpreters, a text editor, and interactive
dialogue systems. These implementations were all relatively low
cost in terms of development and implementation effort when
compared to similar efforts using conventional techniques. The
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resulting programs are readable, and portable to any new machine.

In addition to its direct usefulness as a set of development and
implementation tools, MINT can be an effective means of
communication. MINT written text is precise, compact, and
readable. The MINT Virtual Machine is a simple and carefully
structured machine which displays the essential features of a
stack-based (or zero-address) machine architecture. Thus, the
MINT system provides an effective means of communication between
people, between machines, and between people and machines.

The emphasis on effectiveness of communication makes MINT
suitable for teaching computing principles and techniques. The
system may be used to teach or learn about stack-based architecture,
virtual machine design and implementation, compiling, macro
structure, parsing, and concepts and techniques of portability. In
this text we have not attempted a strict separation of these subjects.
This is because we feel that they are not reasonably separable. Much
of the effectiveness and interest in a system such as MINT derives
from the structural relationships of the components, rather than
from the components themselves. Thus, in this text, we have tried
to develop an understanding of how MINT fits together. This may
initially seem to impede learning, where compartmentalization is
always a strong temptation. However, we believe that the end result
will be found to be beneficial. The complete MINT system is more
significant than the sum of its parts.

1.3. Purpose

The purpose of MINT is to facilitate the analysis and
transformation of structured symbolic information. An example of
such analysis and transformation is a conventional language
compiler. Other examples include text-editing routines (such as
those given in Section 12.6) or interactive dialogue systems for
specific applications.

In order to satisfy a wide range of possible requirements, the
system is organized in the form of a set of general-purpose tools.
These tools may be used for many purposes, including the
development of new tools. The system itself is constructed by means
of the tools which it provides for general use. The open and
modifiable structure of the system is essential to its generality, and
allows a holistic approach to many problems which previously
required ad-hoc solution methods.
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Due to its compact structure, MINT is well suited for use in
very small machines. An eight bit processor with 32K (here, and
throughout, K is used to mean 1024) bytes of storage is sufficient for
many purposes. However, the system also operates effectively on
large-scale systems.

The complete machine independence of the MINT language
permits the writing of systems which may have wide applicability
and permanent value.

1.4. Background

Historically, computing has developed from a primary interest
in the algorithms required for solution of numerical problems. The
earliest forms of computing were characterized by relatively large
algorithmic programs which operated on relatively small quantities
of data. As computing technology developed there was a tendency
to apply the tools which were developed for this structure to other,
often non-numerical, problems. At the same time, the volumes of
data, both numerical and symbolic, began to grow very rapidly. At
present it is frequently the case that the amounts of data to be
processed far exceed the size of the processing programs. Usually,
the purely numerical processing accounts for only a very small part
of the total. Thus, it is natural to question the basic structure of
current computing tools, based as they are on conditions which no
longer prevail. It is clear that if programs are used to process very
large quantities of data, the value of the program and the
importance of correctness of the program are increased. It is also
evident that much of the complexity of current computing derives
from the attempt to develop algorithms which express symbolic
transformations. Finally, the slow and cumbersome operation of
early computers provided the incentive for investment in improved
efficiency of program execution. Early programs were often
operated without substantial change for long periods. Thus,
substantial effort in writing and understanding the program could
be justified. The speed and flexibility of current computers imply
that the limiting factor in their productive use is the rate at which
information which is understood by humans can be precisely and
correctly communicated to and from the computing system.

These background considerations have led us to attempt to
develop new language tools which are based on the view that data
transformation is the fundamental task, and that machine



