VERTEBRATE SPECIATION

EDITED BY W. FRANK BLAIR

VERTEBRATE SPECIATION

A University of Texas Symposium

Edited by W. FRANK BLAIR

University of Texas Press, Austin

INTRODUCTION

This volume results from a conference on "Vertebrate Speciation" held at the University of Texas from October 27 to October 31, 1958. This was one of several academic and research conferences convened at the University during the year in observance of the seventy-fifth anniversary of the founding of the University of Texas. That this seventy-fifth anniversary conference date should coincide with the one-hundredth anniversary of the presentation to the scientific world of the Darwin-Wallace thesis of evolution through natural selection is highly appropriate. The diversity of research areas and interests (genetics, paleontology, ecology, ethology, palynology, population dynamics, morphology) represented at this conference serves as a dramatic reminder of the progress and diversification in evolutionary research and thinking through one hundred years of Darwinian theory.

A central theme of the conference was the mechanisms of species formation and evolution, with particular reference to the vertebrates. Species are visualized as living systems, and the formal papers presented and the animated discussions that ensued revolved around the dynamic aspects of these systems. The organizers of the conference were exceptionally fortunate in obtaining the participation, as either moderators or speakers, of leaders in fields that are contributory to the understanding of species as dynamic, interacting, and evolving systems

The moderator for each of the five one-day sessions prepared a brief introduction to the general subject of discussion for that day. Pertinent discussions following the presentation of each paper were tape-recorded, edited by the undersigned with assistance from Clark Hubbs and R. K. Selander, and inserted in the volume after the

Vertebrate Speciation

appropriate paper. Technical difficulties unfortunately prevented recording the discussion that followed three of the addresses. The undersigned assumes responsibility for any change of meaning that may have resulted from the editing of these discussions. We hope of course that none occurred.

Organization of this conference was made possible by a grant from the Research Institute of the University of Texas. We are indebted to Dr. W. Gordon Whaley, Dean of the Graduate School, President Harry H. Ransom, then vice-president and provost, and other administrative officials of the University of Texas who gave the conference their enthusiastic support and assisted our efforts in many ways. A grant from the National Science Foundation, through its program in "Systematic Biology," made attendance at the conference possible for thirty-seven graduate students from eleven other institutions.

Clark Hubbs and Robert K. Selander worked with us in organization and conduct of the conference. Our respective graduate students are due many thanks for the assistance they gave both in preparation for the conference and in direction of it.

> W. Frank Blair Editor

CONTENTS

Introduction	vii
Isolating Mechanisms Comparative Study of	
Isolating Mechanisms in the Speciation of Fishes C. L. Hubbs	5
Isolating Mechanisms in Anuran Amphibians J. S. MECHAM	24
Origin of	
A Cellular Basis for Genetic Isolation	62
Hybridization and Isolating Mechanisms	69
Evolution of Behavior	
The Evolution of Visual Communication	96
Development and Behavioral Evolution in <i>Peromyscus</i> . J. A. King	122
Structure as Related to Behavior in the Organization	
of Populations in Reptiles	148
Habitat Distribution and Niche Relationships in North American Species of Parus KEITH L. DIXON	179
Polymorphism	
Polymorphism in Anuran Populations	221
The Inheritance and Distribution of Vertebral Stripe Color in the Cricket Frog	235

ix

POLYTYPIC SPECIES				
Problems in the Application of the Subspecies Conc	ept i	n		
Vertebrate Taxonomy	_		*	262
Speciation and the Microgeographic Race	,	•	•	286
J. K. Doutt				
POPULATION DYNAMICS				
Polymorphism and Population Structure in				
Lebistes reticulatus			×	320
CARYL P. HASKINS, EDNA F. HASKINS,				
JOHN J. A. McLaughlin, and Richard E. Hewi	TT			
Longevity and Age-Size Groups in Some Common				
Snakes				396
HENRY S. FITCH				
Experiments on Homing Behavior and Speciation in	n			
Taricha				415
VICTOR C. TWITTY				
Competitive Relations in Lizard Populations .				460
W. W. Milstead				
Age and Origin of Species				
Young Sibling Fish Species in Northwestern Europ				498
Gunnar Svärdson	C	•		400
Age and Origin of Some Southwestern Australian				
Species of Crinia				514
M. J. Littlejohn				
Speciation Rates in Some Fresh-Water Fishes of				
Western North America				537
R. R. MILLER				
Speciation in the Earlier Central Anatolian Lake	Basir	1		561
C. Kosswig				
Recent Advances in Pleistocene Stratigraphy				
and Biogeography				594
E. S. Deevey				
Index				625
index	r.		•	020

LIST OF ILLUSTRATIONS

Isolating Mechanisms in Anuran Amphibians				
1. Distributional Relationships of Chorus Fro	gs			31
2. Temporal Distribution of Breeding Activity				
Chorus Frogs				40
The Evolution of Visual Communication				
1. Darwin's Illustrations of the Expressive M	loven	nents	of	
the Domestic Dog				98
2. An Oystercatcher in "Irrelevant Behavior"				99
3. Similar Fighting Postures Used by Differen	t			
Families of Birds	٠,			100
4. Courtship Display in the Male Cutthroat F	inch'		*	106
5. Simple Graded Display by Fringilla coele	bs	*		107
6. A More Complex Graded Display .				108
7. A Complex of Graded Signals in Facial E	xpres	sions	of	
the Chimpanzee				110
8. Examples of Darwin's Principle of Antithe	sis			111
Development and Behavioral Evolution in <i>Peron</i>	nyscu	s		
1. Mean Number of Minutes Spent on an	J			
Elevated Platform				136
Polymorphism in Anuran Populations				
1. Common Spotted Leopard Frog				226
2. Adult "Mottled Burnsi" Frog				228
3. Variation of Spotting in Burnsi Frogs .				230
4. Burnsi Frog Offspring				232
		7-1		
The Inheritance and Distribution of Vertebral St in the Cricket Frog	ripe (Joior		
1. Dorsal View of Cricket Frog	. ^		•	239
				xi

2. Green-striped Frogs Appearing Gray (by month) .	243
3. Vertebral-Stripe-Color Proportions	
(Travis County, Texas)	253
4. Vertebral-Stripe-Color Proportions	
(Texas and Louisiana)	255
Problems in the Application of the Subspecies Concept in	
Vertebrate Taxonomy	
1. Distribution of Psammophis sibilans and P. schokari	263
2. Geographic Variation in Draco volans	265
3. Distribution of Dicrurus leucophaeus	268
4. Distribution of Five Subspecies of	
Callosciurus nigrovittatus	272
5. Distribution of Certain Subspecies of	
Callosciurus prevosti	273
Speciation and the Microgeographic Race	
1. Blarina brevicauda; Microtus pennsylvanicus	289
2. Localities Where Samples of <i>Blarina brevicauda</i> Were	_00
Collected	291
3. Illustration of Bias Due to Collectors' Techniques .	292
4. Map Showing Location of Specimens Discussed in the	
Study of Variation in Microtus	294
5. Variation in Local Populations of	
Microtus pennsylvanicus	296
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Polymorphism and Population Structure in	
Lebistes reticulatus	
1. Wild Females from Paria River	337
2. Pauper Pattern (Pa)	338
3. Maculatus Pattern (Ma)	339
4. Armatus Pattern (Ar); Coccineus-vitellinus	
Pattern $(CoVi)$	340
5. Maculatus-coccineus-vitellinus Males	341
6. P, Males of Contrasting Color Patterns Used in	
Competitive Breeding Experiments	342
7. Masculinized F ₁ Female Progeny of Males in Figure 8	343
8. The Island of Trinidad	344
9 (a and b). Distribution of Stocks of Introduced Lebistes	345

10. Recoveries of Males of Maculatus Pattern from the	
Arima River	346
11. Male Maculatus; F ₁ Male Progeny	347
12. Crossover of Dorsal-Coloration Portion of Maculatus	
Pattern	348
13. F ₁ Female Progeny of Cross in Figure 12	349
14. Original Female in Which Crossover of Maculatus	
Dorsal Pattern Was Found	350
15. Series Suggesting Allelic Behavior of Maculatus and	
F ₁ Male Progeny of Female CoVi	351
16. Female Siblings of F, Males in Figure 15	352
17. Masculinized Female Progeny from Maculatus Male	353
18. Five Wild Color Patterns	354
19. Distribution of Pattern in Figure 18	355
20. Wild Females from Upper Aripo River, Masculinized	356
21. Wild Females from Lower Aripo River, Masculinized	357
22. Wild Females from Upper and Lower Aripo River,	
Masculinized in Same Vessel	358
23. Wild Females from Upper and Lower Aripo River,	
Masculinized in Same Vessel	359
24. F ₁ Progeny of Wild Sb Male from Aripo River	
(Y-linked)	360
25. F ₁ Male Progeny of Wild Sb Male from Aripo River;	
Masculinized Female Siblings (X-linked)	361
26. F ₁ Male Progeny of Wild Sb Male from Aripo River; F ₁	
Female Siblings (X-+Y-linked)	362
27. As in Figure 26 (X- + Y-linked)	363
28. As in Figure 26 (X-+Y-linked)	364
25110 111 2 18210 25 (12 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Longevity and Age-Size Groups in Some Common Snakes	
1. Snout-Vent Lengths of Female Copperheads	402
2. Tentative "Age Pyramid" for the Yellow-Bellied Racer	404
3. Sex- and Age-Groups in a Ten-Year Sample of	
Rat Snakes	406
4. Size Groups in a Ten-Year Sample of the	
Ring-Neck Snake	407
Experiments on Homing Behavior and Speciation in Taricha	
1. U.S. Forest Service Aerial Photograph of the Study Area	417
5 1	
	xiii

2. Histograms Showing the Numbers of Mature T. rivularis	
Females Collected Daily	419
3. Histograms Showing the Numbers of New Males and	
Females Entering a Short Segment of the	
Experimental Stretch	421
4. Contour Map of the Study Area	423
5. Recaptures of Marked Animals Collected and Released	425
6. Recaptures in Two Series of Animals Marked in 1955	428
7. Recaptures in Two Series of Animals Marked and	
Displaced to a Foreign Segment of the	
	430
Experimental Stretch	
$19\overline{53}$	433
9. Homing of Blinded Animals	435
10. Enclosure Constructed near Streamside To Test Ability	
of Displaced Animals To Orient Themselves	439
11. Results of Experiments on Orientation of	
Displaced Animals	441
Competitive Relations in Lizard Populations	
1. The Occurrence of Four Species of Whiptail Lizards at	
Four Stations in Southwestern Texas	469
2. Comparisons of the Percentage Distributions of Four	200
Species of Cnemidophorus	471
3. Distribution of the Canyon Lizards in the Big Bend	
Region	477
Young Sibling Fish Species in Northwestern Europe	
1. The Onega Valley Ice Lake and the Spread of the	
2	501
Glacial Relicts	501
Fauna	505
3. The Sibling Species of Sticklebacks	506
5. The Sibiling Species of Sticklebacks	300
Age and Origin of Some Southwestern Australian Species of O	Crinia
1. Position of Present Coastline	515
2. Seasonal Distribution of Rainfall	516
3. Zoogeographical Subregions of Australia	520
4. Principal Barriers to Distribution of Terrestrial	
Vertebrates	521

Oscillograms of Calls of the Species of Crinia Calls	526 527
Speciation Rates in Some Fresh-Water Fishes of Western North	
America	
1. Approximate Location of Species of Closely Restricted	
Distribution in Western North America	538
2. Recent Distribution and Fossil Records of the American	000
	539
	541
3. Sacramento Perch 4. Maximum Extent of Late Pleistocene Waters in the	341.
	543
	343
5. Part of Western North America Showing Drainage	E44
Systems facing	544
6. Sketch Map of Southeastern California	545
7. New World Distribution of the Killifishes	546
8. Empetrichthys latos, one of the Two Species of the	= 40
Death Valley Endemic Genus	549
9. Devils Hole Pupfish	551
10. Lovells Spring Pupfish	553
Speciation in the Earlier Central Anatolian Lake Basin	
1. Forms of Cyprinodont Fishes	562
2. Distribution Map of Anatolian Cyprinodont Fishes .	564
3. Postglacial development of the Anatolian Lake Basins	566
4. Reduced Scale Clothing of Anatolichthys splendens	568
5. Different Degrees of Scale Reduction in Anatolichthys	570
6. Two Different Types of Burdur Fishes	571
7. Populations around the Acigöl Basin	573
8. The Spring Acipunar—in the Background the Dry Lake	1,50,50,50
Bottom with a Layer of Salt	574
9. Veli Ölen Armudu	575
10. Söğütlü 2—a Spring Ending in a Large Area with	0.0
Swamps and Reed	576
11. Karahüyük—Widely Separated from the Lake Border	510
	577
with a Normally Scaled Population	311
12. Azmak—Widely Separated from the Lake Border,	570
Which Is Far Behind the Cattle	578
13. Karadut in 1954	579

14. Full-sized Fishes Entering a Spring Region of the	
Southern Shore of Lake Acigöl	580
15. Dead Fishes in the Spring Region	580
16. Fishes—Whitish by a Layer of Sulphur Covering Their	
Bodies	581
17. Young Fish Wave	582
18. Affinities in the Side-striped Anatolian Cyprinodontid	
Fishes	584
19. Kosswigichthys asquamatus, Sözer—the Scale	
Rudiments of a Male Much Enlarged	588
20. Two Scales with Spines, between Them a Sense Organ	
and Melanophores	589
21. Anatolichthys-like F ₁ -Hybrid between Kosswigichthys	
and Aphanius	590
22. High Degree of Scale Reduction in F ₁ -Hybrids between	
Kosswigichthys and Anatolichthys	591
Recent Advances in Pleistocene Stratigraphy and Biogeography	
1. Correlation of Pollen Zones in Eastern North America	597
2. Emiliani's Paleotemperature Curve	602
3. Present and Former Relations of Land and Sea in the	
Gulf of the St. Lawrence Region	610

ISOLATING MECHANISMS

Comparative Study of

ERNST MAYR, moderator

Isolating Mechanisms in the Speciation of Fishes by C. L. Hubbs, p. 5 · (No discussion recorded)

Isolating Mechanisms in Anuran Amphibians By J. S. Mecham, p. 24 · Discussion, p. 51

Origin of

ERNST MAYR, moderator

A Cellular Basis for Genetic Isolation by John A. Moore, p. 62 · Discussion, p. 66

Hybridization and Isolating Mechanisms BY CHARLES G. SIBLEY, p. 69 Discussion, p. 82

ISOLATING MECHANISMS

ERNST MAYR

Harvard University

DEVOTING THE OPENING SESSION of a conference on speciation to the topic of isolating mechanisms seems appropriate for two reasons. One is that species are defined in modern biological literature as "reproductively isolated populations," and the second, a consequence of this definition, is that speciation is the origin of such isolation.

Today's two sessions thus are logically defined by the nature of species and the nature of the process of species formation. Without wanting to anticipate any of the speakers I would like to provide in a few words the framework for today's discussions.

Isolating mechanisms are all those devices which prevent interbreeding between natural populations, actually or potentially in contact with each other. The earlier literature, even back to Darwin's time, concentrated on a single one of these mechanisms: sterility. The studies of the last fifty years show, however, that numerous additional isolating mechanisms exist and that sterility may be of far less practical importance, at least in the higher animals, than are behavior and habitat barriers. Geographical separation is not an isolating mechanism or else one would have to call every isolated population a separate species. The comparative study of isolating mechanisms is important because the relative valence of the various isolating mechanisms differs from species to species, from genus to genus, and from family to family.

Comparative Isolating Mechanisms

In this morning's session, we shall hear what the major isolating mechanisms are among the fishes and anurans, how they can be studied, and where and under what circumstances they may break down and thus result in natural hybridization. The important question of the origin of these isolating mechanisms will be discussed in this afternoon's session. That even Darwin and Wallace argued over whether isolating mechanisms were an incidental by-product of the genetic divergence of isolated populations or the result of natural selection is a fact perhaps not generally known. It now appears that a universal answer, equally valid for all isolating mechanisms, may not be possible. The explanation for sterility barriers may be different from the explanation for behavior barriers. That the sterility barrier could be improved by natural selection would seem highly improbable, as Darwin himself has pointed out. Far more experimental work is needed to determine whether the strength of isolating mechanisms is greater among sympatric populations of two related species than it is outside the zone of overlap. That there are considerable differences among the populations of a species is indicated by many observations, perhaps the most convincing being the fact that the reproductive isolation among perfectly good sympatric species may break down at limited locations. The study of hybridization, then, is quite evidently an important area of the study of isolating mechanisms.

Isolating Mechanisms in the Speciation of Fishes¹

CARL L. HUBBS

Scripps Institution of Oceanography, University of California

That the problem of segregation versus integration is one of long standing will be obvious from the fact that I treat it as it is exemplified among the lowest of the vertebrates. Speciation in its early stages obviously results from the ascendancy of segregation, as integration is reduced and eventually eliminated. (I hasten to add that I derive no moral from this concept, and draw no comparison with any current social problem.)

We may visualize speciation as a long-continued and often fluctuating conflict between forces that tend to unify the gene pool and those that tend to diversify populations genetically. The prime unifying force is interbreeding. The opposing factors, which lead to genetic isolation and speciation, are, I believe, numerous and complex; they are both intrinsic, in genetic mechanisms, and extrinsic, in ecological relations.

I belong to the school that stresses what may be called the environ-

¹ Contributions from the Scripps Institution of Oceanography, University of California, New Series.

5