

Ken Barbier

CP/M
SOLUTIONS

A\

A SPECTRUM BOOK

PRENTICE-HALL, INC,,
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Barbier, Ken.
CP/M solutions.
“A Spectrum Book.”
Includes index.
1. CP/M (Computer operating system) I. Title.

A76.6.B35737 1985 001.64 85-526
ISBN 0-13-188186-8
ISBN 0-13-118178-7 (pbk.)

© 1985 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632.

All rights reserved. No part of this book may be reproduced in any form
or by any means without permission in writing from the publisher.

A Spectrum Book. Printed in the United States of America.

This book is available at a special discount when ordered
in bulk quantities. Contact Prentice-Hall, Inc., General
Publishing Division, Special Sales, Englewood Cliffs, N.J. 07632.

10 9 87 6 5 4 3 2 1
Bookware® is a registered trademark of Prentice-Hall, Inc.

Editorial production/supervision by Jane Zalenski
and Rhonda K. Mirabella

Cover design © 1985 by Jeannette Jacobs
Manufacturing buyer: Frank Grieco

CP/M is a registered trademark, and CP/M Plus is a trademark
of Digital Research, Inc. Centronics is a registered trademark of
Centronics Data Computer Corp. Intel is a registered trademark
of Intel Corporation.

ISBN 0-13-18818L-8
ISBN 0-13-188178-7 {PBK.1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand
Editora Prentice-Hall do Brasil Ltda., Rio de Janeiro

CP/M
SOLUTIONS

Ken Barbier has more than thirty years of expe-
rience in electronics and computers. In addition
to writing numerous articles on computer hard-
ware, software, and applications, he has been in-
volved in the system integration of micro-
computers and in the designing, constructing,
and programming of real-time data acquisition
and control systems.

Preface

Intended for the experienced user of CP/M—based computers, this book
answers questions that arise when new peripheral devices are connected to
an existing computer, or when new systems are first assembled. Some hard-
ware topics are included, but the reader does not need any previous knowl-
edge of electronics or peripheral interfacing.

The reader is expected to be an experienced assembly language pro-
grammer. If the experience is with some other computer and assembler,
the confident reader can use this text to learn about the CP/M operating
system and 8080 assembly language programming, although a beginner’s
text is a recommended prerequisite.

Programming style and practices, and some of the subroutines in this
book, are identical to those previously contained in my books CP/M Assem-
bly Language Programming (1983) and CP/M Techniques (1984), both pub-
lished by Prentice-Hall, Inc. The first two chapters here, in particular, are
largely a review of topics previously covered.

I encourage you to read the first two chapters, even if they are a re-
view of lessons previously learned, because they establish the nomenclature
used and basic techniques followed throughout the rest of the text. Begin-
ning at Chapter 3, discussions target the problems encountered in
interfacing computers to peripheral devices and to other computers. Both
hardware and software solutions to those problems are presented in a
depth and level of completeness not found in other, more theoretical,
presentations.

Chapter 3 looks at the Centronics parallel printer interface and its
variations and explains why even changing the cable can solve computer-
to-printer incompatibilities. The next chapter expands on printer interface
problems and includes a PRINT program that can solve format and timing
differences. An install program for PRINT is included to permit painless
modification of the program.

Xi

Part 2 is devoted to a discussion of the RS-232 serial interface, why
any two devices connected by it may not work together, and how to use it to
communicate with terminals, pfinters, other computers, and the outside
world.

Part 3 discusses problems that arise during the course of imple-
menting solutions to other problems. And in the final chapter, the reader is
provided with an example and is encouraged to make use of all of the pro-
gram modules in the book to solve future problems.

The solutions presented are based on many years of experience in
connecting devices that may have plugs and jacks that are similar in ap-
pearance but that often don’t perform as expected when first connected.
Many examples from real life are discussed so that the reader can learn
both canned solutions and the approach necessary to tackle interfacing
problems as they occur in the future.

Problems will always crop up in the computer world, and solutions
can always be found. With the examples in this book, the reader should
find many solutions to existing problems, as well as guidelines that will help
solve future problems as they arise.

X1l

Contents

PART 1 UTILITY SOLUTIONS

CHAPTER 1 CP/M Computer Solutions, 3

Problems and Solutions, 3
What is CP/M?, 4
Organization of CP/M, 6
Interfacing with CP/M, 9

CHAPTER 2 CP/M Programming Techniques, /2

Programming Style, 12

Solving Programmer Errors, 15
Utility Subroutines, 18

CP/M Techniques Defined, 19

CHAPTER 3 A Printer Primer, 20

Centronics Standard Interface, 20
A Handshake Signal: BUSY, 23
How Many Grounds?, 23

Cable Problems, 24

Other Handshake Signals, 25
Software Printer Controls, 26
Running the Program, 28

String ’em Together, 30

CHAPTER 4 Printing Solutions, 31

Printer Problems, 31

Source File Problems, 32
Complicated Solutions, 35
Standard Module Header, 36
Inside PRINT, 37

Parsing the Command Line, 40
Disk File Access: READ, 42
List a Record, 43

Control Processors, 45

Do It Yourself, 48

An Installation Program, 48
Part One Summary, 55

PART 2 COMMUNICATIONS SOLUTIONS

CHAPTER 5 Serial Communications from the Ground Up, 59

Serial vs Parallel Interfaces, 59

An Early Serial Communications Channel, 60
Serial Communications Standards, 62
Modern Signaling Levels, 64

RS-232 Signals, 67

The Use and Abuse of RS-232, 69

CHAPTER 6 Serial Interface Problems and Solutions, 72

Matching Options, 72
Handshake Signals, 77

CHAPTER 7 Inter-Computer Communications, 86
Transmitting Binary Data, 86
SENDFILE and RECVFILE, 90
Inside the Programs, 92
Sending and Receiving, 102
SUBMIT Lots of Files, 103
Hardware Hangup Solutions, 104
Customizing Ideas, 106

CHAPTER 8

Terminal Solutions, 107

Half- and Full-Duplex Terminals, 107
HALFTERM for Person-to-Person, 108
FULLTERM for Person-to-Computer, 110
Using the Terminal Programs, 111
AUTOTERM Combines Two Programs, 113
DOWNLOAD for Remote Controllers, 116

PART 3 TEST AND MAINTENANCE SOLUTIONS

CHAPTER 9

CHAPTER 10

Debug Solutions, 121

Testing Problems, 121

The Rest of RAM, 123
RAMCHEK Checks RAM, 125
PGMSIZE Maps Programs, 127
Programmer’s Solutions, 128

A Library of Solutions, 130

UnLOADing a File, 130
Find Your Own Solutions, 133

Appendix A, 134
Appendix B, 136

Index, 139

PErE A

UkeiliEy
soluEions

chapter1

CPIM
computer
solutions

You've got troubles. I've got troubles. We've all got troubles. When you
find the solution to a problem, pass it on.

The channels of communications for problems and their solutions are
often too limited. Computer magazines want short articles to attract the
reader—much shorter than some of the chapters in this book. Sometimes
subjects are so confusing that an in-depth treatment is necessary. I have
tried to provide that degree of detail in this book—details that will help you
troubleshoot problems that are often real stumbling blocks.

Serial communications via the RS-232 “standard” is an example of a
simple interface that can and has generated an incredible number of prob-
lems for the computer user. Some solutions are simple, whereas others are
complicated by the differences between two connected devices. Sometimes
the engineers who designed the two devices interpreted the “standard” in
two different ways. As a result, too often when we hook up an “RS-232”
device to the “RS-232” port on a computer, nothing intelligible gets
through. Many hours or sleepless nights later a solution is found.

A problem arose, and human intellect found a solution. Pass it on.

PROBLEMS AND SOLUTIONS

That is the theme of this book—problems and solutions. Obviously, it is im-
possible to cover all the problems that could arise during the normal use of
any computer. We have to begin somewhere, so we will start with the most
common problems of the most common computers: those micros running
the CP/M operating system and communicating with the outside world
through RS-232 serial ports and Centronics standard parallel ports.
Each time we solve a problem, we create an experience that can be
used in the solution of other problems in the future. Unfortunately, too
often the solution of a computer programming problem results in source
code that is not in a form suitable for use in future programming efforts.

3

Portable Solutions

One of the goals of this book is to show how to structure program building
blocks that can be easily included as parts of future programs. Subroutines
and modules that can be used in many programs are scattered throughout
the examples that follow. I have used all these modules in other programs
in various microcomputer systems. They have proved to be transportable.

By applying consistent register-use rules and by routing disk and I/0
access through the built-in interface provided by CP/M, we can ensure that
all our programs can operate on any computer running any version of
CP/M. This is one of the nice things about CP/M. It provides consistent in-
terface protocols between the operating system and application programs.

Of course, there are times when we want to write a test or diagnostic
program that is hardware-specific so that we can look past CP/M and test
the computer hardware directly. CP/M can provide the facilities to con-
struct programs to do this, but these programs will include the absolute ad-
dresses of memory locations and 1/0 ports. We have to remember that they
will not run on another computer with a different hardware configuration.
These programs are sometimes necessary, but we should write them only
when there is no alternative.

WHAT IS CP/M?

CP/M was the first standard operating system for microcomputers, which
once were all 8-bit machines. When CP/M was introduced, memory was ex-
pensive, and 16 Kbytes was a lot. The floppy disk was new, and it made the
early microcomputers practical for the general computing tasks they were
really not designed for.

The first version of CP/M was tiny, to fit the existing hardware. The
latest 8-bit version, bank-switched CP/M Plus, is itself larger than that origi-
nal 16 Kbytes. It is the first really user-friendly version, making use of mul-
tiple 64 Kbyte banks of memory to provide features that were undreamed
of a decade ago.

A Familiar Environment

In spite of their differences in size and features, all versions of CP/M pro-
vide the programmer with a familiar environment. If properly written, as-
sembly language programs for the various 8-bit versions can be moved
from computer to computer without change, and most can be easily trans-
lated into 16-bit CP/M-86 source code, to be assembled and run on the
newest microcomputers.

CP/M relieves us of the necessity of knowing very much about the
hardware configuration of the computer on which our programs will run.
However, we still have to start by defining some hardware-related terms so
that when reference is made to the LST: or AUX: we will all know what
these cryptic designations mean.

In looking at some of the problems that confront the computer user—

problems with hardware, software, and their interactions—we will use tech-
niques designed to make our programs easy to maintain and transport
from version to version. To understand how this is done, you have to know
a little about the organization of CP/M and a lot about how to write pro-
grams that make use of its standard interface “port,” the BDOS function
call through memory location 5.

In this introductory chapter, which may be a review for many of you,
we will begin with a quick look at the hardware of a CP/M computer. Then
we will examine the organization of CP/M and follow this with a close look
at the BDOS interface and what it means to programmers.

Hardware and Terms

So that we start out with some degree of mutual understanding, let’s look at
a minimum configuration of a microcomputer running the CP/M
operating system and see what we call the various devices that are con-
nected to it. Figure 1—1 shows a typical small, single-user CP/M computer.
It includes one CRT-type (TV tube) console terminal (CON:), a line printer as
the hard-copy list device (LST:), from one to 16 disk drives, (A:, B:, . .. ,P:),
and a modem connected to telephone lines to provide communication,
message handling, and software sharing with the rest of the computer
world.

Some people use modems to transfer programs from computer to
computer, but of course we wouldn’t do that without paying for the pro-
grams. If the modem is connected to a CP/M Plus-based computer, it is ac-
cessed through the AUX: logical device, which can both send and receive.
Other versions of CP/M call the auxiliary output device the punch (PUN:), a
term left over from the long-ago days of the paper tape punch. Its comple-
ment, the auxiliary input device, was the RDR:, which read data from previ-
ously punched paper tape. The tape is gone, but the nomenclature lingers
on.

Logical vs. Physical

There is no physical difference between an AUX: device and the combina-
tion of PUN: and RDR: devices. CON:, LST:, and the other terms ending
in “:" are logical device names applied to physical devices;, the actual computer
peripheral hardware. We don’t want our portable programs to worry about
whether they are punching holes in paper tape or sending funny noises out
over telephone lines, so CP/M provides interfaces to logical devices, and
you connect whatever physical device you want at any time. Bet you never
even saw any punched paper tape, did you?

Now that we have defined some terms that relate to parts of your
computer, let’s try to standardize a set of verbs that describe communica-
tions with those devices. Itis difficult to do this because there are too many
variations in common use. We will do the best we can and never try to
“print” on the console screen, but there are too many synonyms for some

5

TO THE
WORLD

MA BELL
MODEM
PUN: AND RDR:
OR AUX:
&
(33}
«
2\ &
DGR
23\
P »
Qv [\
T2z v
LINE PRINTER = O
LST:)
E SHOW, DISPLAY, WRITE
/ CP/M
TYPE, ENTER, READ COMPUTER
—J.="]
CONSOLE TERMINAL WRITE READ
CON: STORE LOAD

DISK DRIVE (S)
A:, B:, ..., P:

Figure 1-1. A typical CP/M computer. The common names (LINE PRINTER,
etc.) and logical unit names (LST:, etc.) of the computer are defined, along with
terms that refer to data flow between the units. While many other types of periph-
eral equipment can be connected to a CP/M computer, the examples in this book
are limited to this subset of all those possible.

operations. We have included some common ones in Figure 1-1. Your
computer programs can send data to your modem, transmit it (abbreviated
TX), or punch it to the PUN:. But please don’t punch the CON:, even if
you feel like it sometimes.

ORGANIZATION OF CP/M

The internal organization of CP/M, as is true for all operating systems, has
been dictated partly by the constraints imposed by the computer hardware

6

and partly by the logical breakdown of its functions. Some aspects ot CP/M
were forced upon it by the environment in which it was originally devel-
oped: the Intel MDS development system. This computer was the one that
had the paper tape punch and reader. Some characteristics of its internal
organization have been passed down to us through CP/M.

Dedicated RAM

The lowest 256 bytes (100 in hexadecimal) of main memory in a CP/M com-
puter have been set aside for dedicated uses. This is partly a hand-me-
down from the MDS and partly dictated by the organization of the 8080
CPU and its descendants. The functions of the first eight memory locations
are examples. The first three contain a jump instruction into the warm start
entry in CP/M. The next contains an 8-bit value (IOBYT) defining what
physical device is attached to each logical device. The fifth location records
which disk drive is the currently selected default drive. The last three of the
bottom eight bytes contain a jump instruction into CP/M’s BDOS, which we
will discuss in detail very shortly.

Following those first eight memory locations are 56 bytes reserved for
hardware interrupt vectors, as dictated by the architecture of the 8080.
From just above the highest interrupt vector location and on through the
first 256-byte “page” of memory, CP/M sets aside some standard usage
buffer workspaces.

These buffers have been organized to make the most efficient use of
the first memory page so that user application programs can all start at the
same easy-to-remember location: hexadecimal 100 (100H), the start of the
transient program area (TPA). These buffers also permit the Console
Command Processor (CCP) of CP/M to leave data behind so that CCP itself
can be overwritten by transient programs, giving the user more workspace.

Console Command Processor

This operating system (OS) functional block is the software that communi-
cates with the computer operator. CCP inputs a command line, provides
simple editing functions as the line is typed in, sets up buffers with data
derived from the command line, and instructs BDOS to load and execute
named programs, unless the operator requests a built-in CCP function.

The built-in functions for most versions of CP/M are DIR, ERA, REN,
SAVE, TYPE, and USER. Any other command (and some of these, in
CP/M Plus) input by the operator as the first word in the command line is
assumed by CCP to be the name of a transient program, and CCP will tell
BDOS to load and execute the named program as soon as the rest of the
command line has been decoded.

The buffers set up by CCP include a copy of the command line typed
by the operator so that transient programs can be aware of instructions that
the operator has placed on that line following the program name. If the
operator has specified the names of disk data files that the transient pro-

7

