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Preface

Three series of lectures were given at the 32nd Probability Summer School in
Saint-Flour (July 7-24, 2002), by Professors Pitman, Tsirelson and Werner.
In order to keep the size of the volume not too large, we have decided to
split the publication of these courses into two parts. This volume contains the
courses of Professors Tsirelson and Werner. The course of Professor Pitman,
entitled “Combinatorial stochastic processes”, is not yet ready. We thank the
authors warmly for their important contribution.

76 participants have attended this school. 33 of them have given a short
lecture. The lists of participants and of short lectures are enclosed at the end

of the volume.

Finally, we give the numbers of volumes of Springer Lecture Notes where
previous schools were published.
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1971: vol 307 1973: vol 390 1974: vol 480 1975: vol 539
1976: vol 598 1977: vol 678 1978: vol 774 1979: vol 876
1980: vol 929 1981: vol 976 1982: vol 1097 1983: vol 1117
1984: vol 1180 1985/86/87: vol 1362 1988: vol 1427 1989: vol 1464
1990: vol 1527 1991: vol 1541 1992: vol 1581 1993: vol 1608
1994: vol 1648 1995: vol 1690 1996: vol 1665 1997: vol 1717
1998: vol 1738 1999: vol 1781 2000: vol 1816 2001: vol 1837

Lecture Notes in Statistics

1986: vol 50 2001: vol 179
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Scaling Limit, Noise, Stability

Boris Tsirelson

School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel
tsirel@tau.ac.il
//www.tau.ac.il/"tsirel/

Summary. Linear functions of many independent random variables lead to classical
noises (white, Poisson, and their combinations) in the scaling limit. Some singular
stochastic flows and some models of oriented percolation involve very nonlinear
functions and lead to nonclassical noises. Two examples are examined, Warren’s
‘noise made by a Poisson snake’ and the author’s ‘Brownian web as a black noise’.
Classical noises are stable, nonclassical are not. A new framework for the scaling
limit is proposed. Old and new results are presented about noises, stability, and
spectral measures.
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Scaling Limit, Noise, Stability
Introduction

Functions of n independent random variables and limiting procedures for n —
oo are a tenor of probability theory.

Classical limit theorems investigate linear functions, such as f(&;,...,&,) =
(&1 +---+&,)/+/n. The well-known limiting procedure (a classical example of
scaling limit) leads to the Brownian motion. Its derivative, the white noise, is
not a continuum of independent random variables, but rather an infinitely di-
visible ‘reservoir of independence’, a classical example of a continuous product
of probability spaces.

Percolation theory investigates some very special nonlinear functions of
independent two-valued random variables, either in the limit of an infinite
discrete lattice, or in the scaling limit. The latter is now making spectacular
progress. The corresponding ‘reservoir of independence’ is already constructed
for oriented percolation (which is much simpler). That is a modern, nonclas-
sical example of a continuous product of probability spaces.

An essential distinction between classical and nonclassical continuous
products of probability spaces is revealed by the concept of stability/sensitiv-
ity, framed for the discrete case by computer scientists and (in parallel) for
the continuous case by probabilists. Everything is stable if and only if the
setup is classical.

Some readers prefer discrete models, and treat continuous models as a
mean of describing asymptotic behavior. Such readers may skip Sects. 6.2,
6.3, 8.2, 8.3, 8.4. Other readers are interested only in continuous models.
They may restrict themselves to Sects. 3.4, 3.5, 4.9, 5.2, 6, 7, 8.

Scaling limit. A new framework for the scaling limit is proposed in Sects.
1.2, 2, 3.1-3.3.

Noise. The idea of a continuous product of probability spaces is formalized
by the notions of ‘continuous factorization’ (Sect. 3.4) and ‘noise’ (Sect. 3.5).
(Some other types of continuous product are considered in [18], [19].) For two
nonclassical examples of noise see Sects. 4, 7.

Stability. Stability (and sensitivity) is studied in Sects. 5, 6.1, 6.4. For an
interplay between discrete and continuous forms of stability /sensitivity, see
especially Sects. 5.3, 6.4.

The spectral theory of noises, presented in Sects. 3.3, 3.4 and used in Sects.
5. 6, generalizes both the Fourier transform on the discrete group Z5 (the
Fourier-Walsh transform) and the Ito6 decomposition into multiple stochastic
integrals. For the scaling limit of spectral measures, see Sect. 3.3.

Throughout, either by assumption or by construction, all probability
spaces will be Lebesgue-Rokhlin spaces; that is, isomorphic mod 0 to an inter-
val with Lebesgue measure, or a discrete (finite or countable) measure space.
or a combination of both.



6 Boris Tsirelson
1 A First Look

1.1 Two Toy Models

The most interesting thing is a scaling limit as a transition from a lattice
model to a continuous model. A transition from a finite sequence to an infinite
sequence is much simpler, but still nontrivial, as we’ll see on simple toy models.

Classical theorems about independent increments are exhaustive, but a
small twist may surprise us. I demonstrate the twist on two models, ‘discrete’
and ‘continuous’. The ‘continuous’ model is a Brownian motion on the circle.
The *discrete’ model takes on two values +1 only, and increments are treated
multiplicatively: X (¢)/X (s) instead of the usual X (¢) — X (s). Or equivalently.
the ‘discrete’ process takes on its values in the two-element group Zs: using
additive notation we have Zy = {0, 1}, 141 = 0, increments being X (t)— X (s).
In any case, the twist stipulates values in a compact group (the circle, Z,,
etc.), in contrast to the classical theory, where values are in R (or another
linear space). Also, the classical theory assumes continuity (in probability).
while our twist does not. The ‘continuous’ process (in spite of its name) is
discontinuous at a single instant ¢ = 0. The ‘discrete’ process is discontinuous

at t = %, n=1,2,..., and also at t = 0; it is constant on [nil, 717) for every
n.

Fzample 1.1. Introduce an infinite sequence of random signs 71,73, ...; that
is,

1
P(ie=-1)=P(m=+1) = E for each k,
T1,T2,... are independent.

For each n we define a stochastic process X,,(-), driven by 71, ..., 7,,, as follows:

a sample path of X4

(here i =0 =14 = —1,13 = +1)
X.t)= JI = —? ¢
k:1/n<1/k<t l: L:l 1:
e

For n — oo, finite-dimensional distributions of X, converge to those of a
process X (-). Namely, X consists of countably many random signs, situated
on intervals [ﬁT %) Almost surely, X has no limit at 0+. We have

X(t)
B _ (1.1)
X (s) l.-,:.s-<ll_;’\‘<’ A

whenever 0 < s < t < oo. However, (1.1) does not hold when s < 0 < t.
Here, the product contains infinitely many factors and diverges almost surely;
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nevertheless, the increment X(t)/X(s) is well-defined. Each X, satisfies
(1.1) for all s,¢ (including s < 0 < t; of course, &k < n), but X does
not. Still, X is an independent increment process (multiplicatively); that is,
X(t2)/ X (t1),..., X(tn)/ X (tn—1) are independent whenever —oo < t; < --+ <
t, < oo. However, we cannot describe the whole X by a countable collection of
its independent increments. The infinite sequence of 7, = X(%%—)/X(%—) does
not suffice since, say, X (1) is independent of (71, 79,...). Indeed, the global
sign change z(-) — —z(-) is a measure-preserving transformation that leaves
all 74, invariant. The conditional distribution of X (-) given 7, 72, ... is concen-
trated at two functions of opposite global sign. It may seem that we should add
to (71,72, ...) one more random sign 7, independent of (79, 72,...) such that
X(%) is a measurable function of 74, 7441, ... and 7. However, it is impossi-
ble. Indeed, X (1) =71 ... T]\-X(%). Assuming X(%) = [i(Ths Tht1y- -1 Tx) WE
get fi(T1, 70, o iTo0) = T1 - Tk 1 [k (They Tkt15 - - - s T ) for all k. Tt follows that
f1(71,72,...; T ) is orthogonal to all functions of the form g(7,..., Tn)h(7x)
for all n, and thus, to a dense (in Ls) set of functions of 7, 75,...;7x: a
contradiction.

So, for each n the process X,, is driven by (7x), but the limiting process
X is not.

Ezample 1.2. (See also [3].) We turn to the other, the ‘continuous’ model. For
any ¢ € (0,1) we introduce a (complex-valued) stochastic process

() = {exp(iB(ln t) —iB(ln¢)) for t > &,

1 , otherwise,

where B(-) is the usual Brownian motion; or rather, (B(t)),e[().,o) and
(B(—t)),e[o‘x) are two independent copies of the usual Brownian motion.
Multiplicative increments Yz (t2)/Y(t1),...,Yz(tn)/Ye(t,—1) are independent
whenever —oo < t; < --- < t, < oo, and the distribution of Y-(t)/Y-(s) does
not depend on ¢ as far as € < s < t (in fact, the distribution depends on t/s
only). The distribution of Y-(1) converges for ¢ — 0 to the uniform distri-
bution on the circle |z| = 1. The same for each Y:(¢). It follows easily that,
when £ — 0, finite dimensional distributions of Y: converge to those of some
process Y. For every t > 0, Y (t) is distributed uniformly on the circle; Y is
an independent increment process (multiplicatively), and Y (t) = 1 for t < 0.
Almost surely, Y () is continuous on (0,0oc), but has no limit at 0+. We may
define B(-) by

Y(t) =Y(1)exp(iB(Int)) forte R,
B(-) is continuous on R.
Then B is the usual Brownian motion, and

Y(t) exp(iB(Int))

Ys) = exp(iB(In 3)) for0<s<t<oo.
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However, Y (1) is independent of B(-). Indeed, the global phase change y(-) —
e'y(-) is a measure preserving transformation that leaves B (+) invariant. The
conditional distribution of Y () given B(-) is concentrated on a continuum of
functions that differ by a global phase (distributed uniformly on the circle).
Similarly to the ‘discrete’ example, we cannot introduce a random variable
B(—00) independent of B(:), such that Y (t) is a function of B(—oc) and
increments of B(r) for —oo < r < Int.

So, for each ¢, the process Y. is driven by the Brownian motion, but the
limiting process Y is not.

Both toy models are singular at a given instant ¢t = 0. Interestingly, contin-
uous stationary processes can demonstrate such strange behavior, distributed
in time! (See Sects. 4, 7).

1.2 Our Limiting Procedures

Imagine a sequence of elementary probabilistic models such that the n-th
model is driven by a finite sequence (7, ..., 7,) of random signs (independent,
as before). A limiting procedure may lead to a model driven by an infinite
sequence (71, T2, ... ) of random signs. However, it may also lead to something
else, as shown in Sect. 1.1. This is an opportunity to ask ourselves: what do
we mean by a limiting procedure?

The n-th model is naturally described by the finite probability space Q,, =
{—1,+1}" with the uniform measure. A prerequisite to any limiting procedure
is some structure able to join these (2, somehow. It may be a sequence of
‘observables’, that is, functions on the disjoint union,

f}‘-S(QlLﬂQQLﬂ...)—)R.

FExample 1.3. Let fi(m1,..., Tn) = T for n > k. Though f; is defined only on
QW Qpq W. .., it is enough. For every k, the joint distribution of f,..., fr
on €2, has a limit for n — oo (moreover, the distribution does not depend
on n, as far as n > k). The limiting procedure should extend each fj to a
new probability space Q such that the joint distribution of fi...., fr on Q,
converges for n — oo to their joint distribution on €. Clearly, we may take
the space of infinite sequences 2 = {—1,+1}> with the product measure, and
let fi be the k-th coordinate function.

Ezxample 1.4. Still fy(m,....7,) = 7 (for n > k > 1), but in addition, the
product fo(7,..., Tn) = T1...Tn is included. For every k, the joint distribu-
tion of fo, f1,..., fr on Q, has a limit for n — oo; in fact, the distribution
does not depend on n, as far as n > k (this time, not just n > k). Thus,
in the limit, fo, fi1, f2,... become independent random signs. The functional
dependence fy = f1f2... holds for each n, but disappears in the limit. We
still may take Q = {—1,+1}°°, however, f; becomes a new coordinate.

This is instructive; the limiting model depends on the class of ‘observables’.
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Example 1.5. Let fr(m1,...,7n) = Tk ...T, for n > k > 1. In the limit, f}
become independent random signs. We may define 75 in the limiting model
by 7k = fi/fk+1; however, we cannot express fi in terms of 7. Clearly, it is
the same as the ‘discrete’ toy model of Sect. 1.1.

The second and third examples are isomorphic. Indeed, renaming fj of the
third example as g (and retaining f; of the second example) we have

fo 9k
gy = ————; fi =
fi- fraa 9k+1

for k>0, and fy=g;

these relations hold for every n (provided that the same Q,, = {—1,+1}" is
used for both examples) and naturally, give us an isomorphism between the
two limiting models.

That is also instructive; some changes of the class of ‘observables’ are
essential, some are not.

It means that the sequence (fi) is not really the structure responsible for
the limiting procedure. Rather, fi are generators of the relevant structure.
The second and third examples differ only by the choice of generators for the
same structure. In contrast, the first example uses a different structure. So,
what is the mysterious structure?

I can describe the structure in two equivalent ways. Here is the first de-
scription. In the commutative Banach algebra I (€ WQo 4. . .) of all bounded
functions on the disjoint union, we select a subset C' (its elements will be called
observables) such that

C' is a separable closed subalgebra of {5 (2; W W...) containing the unit.

(1.2)
In other words,
C contains a sequence dense in the uniform topology:;
fn€eC, f, = funiformly — feC;
figeC,a,beR = af+bgeC; (1.3)

1eC,
f,geC = fgeC

(here 1 stands for the unity, 1(w) = 1 for all w). Or equivalently,

C contains a sequence dense in the uniform topology;
fn€C, fn — funiformly — feC; (1.4)
f,9€C, ¢:R* = R continnous = ¢(f,g) € C.
Indeed, on one hand, both af 4 bg and fg (and 1) are special cases of ¢(f, g).

On the other hand, every continuous function on a bounded subset of R? can
be uniformly approximated by polynomials. The same holds for ¢(f1,..., f,)
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where f1,...,f, € C, and ¢ : R" — R is a continuous function. Another
equivalent set of conditions is also well-known:

C contains a sequence dense in the uniform topology:
fn€C, f, — funiformly = feC;
f,geC,a,beR = af+bgeC; (1.5)
1eC;
feC = |fleC;

here |f| is the pointwise absolute value, |f|(w) = |f(w)|.
The smallest set C satisfying these (equivalent) conditions (1.2)—(1.5) and
containing all given functions f is, by definition, generated by these f.
Recall that C consists of functions defined on the disjoint union of finite
probability spaces €2,; a probability measure P, is given on each €,. The
following condition is relevant:

lim / fdP, exists for every f € C'. (1.6)
n—oc Q"

Assume that C is generated by given functions fi. Then the property (1.6)
of C' is equivalent to such a property of functions fy:

For each k, the joint distribution of fi, ..., fx on Q, weakly con-

(1.7)
verges, when n — oc.

Proof: (1.7) means convergence of [ (f1,..., fx)dP, for every continuous
function ¢ : R¥ — R. However, functions of the form f = o(fi,.... fx) (for
all k, ) belong to C' and are dense in C.

We see that (1.7) does not depend on the choice of generators f;. of a given
C.

The second (equivalent) description of our structure is the ‘joint compact-
ification’ of 9.9, ... I mean a pair (K, «) such that

K is a metrizable compact topological space,
a:(¥Qaw...) — K is a map, (1.8)
the image (2 W Qo W...) is dense in K.
Every joint compactification (K,«) determines a set C satisfying (1.2).

Namely,
C=a ' (C(K));

that is, observables f € C' are, by definition, functions of the form
f=goaq, thatis, f(w) = g(a(w)), g¢geC(K).

The Banach algebra C' is basically the same as the Banach algebra C(K) of
all continuous functions on K.
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Every C satisfying (1.2) corresponds to some joint compactification. Proof:
C is generated by some fi such that |fi(w)| < 1 for all k,w. We introduce

a(w) = (filw), faw),...) € [-1,1]>,
K is the closure of a(2; W Qo W...) in [—1,1]>;

clearly, (K, «) is a joint compactification. Coordinate functions on K generate
C(K), therefore f; generate o' (C(K)), hence o' (C(K)) = C.

Finiteness of each €, is not essential. The same holds for arbitrary prob-
ability spaces (Q,,, Fn, P.). Of course, instead of 1, (Q; W Qo W ...) we use
Loo(1 6w, .. ), and the map o : (W W...) — K must be measurable.
It sends the given measure P, on {2, into a measure «(P,) (denoted also by
P,oa1) on K. If measures o P,,) weakly converge, we get the limiting model
(2, P) by taking Q = K and P = lim,, . a(P,).

1.3 Examples of High Symmetry

Ezample 1.6. Let €, be the set of all permutationsw : {1,...,n} — {1,...,n},
each permutation having the same probability (1/n!);

Fo( W, ..) — Ris defined by
fw)={k:wk) =k};

that is, the number of fixed points of a random permutation. Though f is
not bounded, which happens quite often, in order to embed it into the frame-
work of Sect. 1.2, we make it bounded by some homeomorphism from R to
a bounded interval (say, w — arctan f(w)). The distribution of f(-) on Q,
converges (for n — oo0) to the Poisson distribution P(1). Thus, the limiting
model exists; however, it is scanty: just P(1).

We may enrich the model by introducing

fulw) =k <un:w(k)=k};

for instance, fos(-) is the number of fixed points among the first half of
{1....,n}. The parameter u could run over [0, 1], but we need a countable
set of functions; thus we restrict u to, say, rational points of [0, 1]. Now the
limiting model is the Poisson process.

Each finite model here is invariant under permutations. Functions f, seem
to break the invariance, but the latter survives in their increments, and turns
in the limit into invariance of the Poisson process (or rather, its derivative,
the point process) under all measure preserving transformations of [0, 1].

Note also that independent increments in the limit emerge from dependent
increments in finite models.

We feel that all these f,(-) catch only a small part of the information
contained in the permutation. You may think about more information, say,
cycles of length 1,2,... (and what about length n/27)
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Example 1.7. Let €, be the set of all graphs over {1,...,n}. That is, each w €
Q,, is a subset of the set ({1"'2"""}) of all unordered pairs (treated as edges, while
1,...,n are vertices); the probability of w is pi‘fi(l — pp)M (= D/2=1wl - where
|w]| is the number of edges. That is, every edge is present with probability p,,.
independently of others. Define f(w) as the number of isolated vertices. The
limiting model exists if (and only if) there exists a limit lim,, n(1 — pp)¥ 1 =
A € [0,00);! the Poisson distribution P()) exhausts the limiting model.

A Poisson process may be obtained in the same way as before.

You may also count small connected components which are more compli-
cated than single points.

Note that the finite model contains a lot of independence (namely, n(n —
1)/2 independent random variables); the limiting model (Poisson process) also
contains a lot of independence (namely, independent increments). However,
we feel that independence is not inherited; rather, the independence of finite
models is lost in the limiting procedure, and a new independence emerges.

Erample 1.8. Let ,, = {—1,4+1}" with uniform measure, and f, : (2, Q&
.) — R be defined by

1
fulw) = NG LZ (W) ;

as before, 71, ..., 7, are the coordinates, that is, w = (Tl (W), vy T (w)) and u
runs over rational points of [0, 1]. The limiting model is the Brownian motion,
of course.

Similarly to Example 1.6, each finite model is invariant under permuta-
tions. The invariance survives in increments of functions fi, and in the limit,
the white noise (the derivative of the Brownian motion) is invariant under all
measure preserving transformations of [0, 1].

A general argument of Sect. 6.3 will show that a high symmetry model
cannot lead to a nonclassical scaling limit.
1.4 Example of Low Symmetry

Example 1.8 may be rewritten via the composition of random maps

a_,ay L — 7,
a_(k)=k—-1, ayk)=k+1;

QA = O, () © -+ - Ay (w) 3
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' Formally, the limiting model exists also for A = oo, since the range of f is com-
pactified.



