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Preface

In the last decades there has been published a large number of books on
functiona] analysis, either textbooks or books on a more advanced level,
some of these with the main emphasis on normed vector spaces and others
devoted to more general topological vector spaces. In most of these books
the notion of a (partially) ordered vector space receives little or no attention,
although a fair proportion of the standard examples of vector spaces is
partially ordered. We recall that a (partially) ordered real vector space
L is a vector space over the real numbers which is at the same time a
partially ordered set such that the vector space structure and the order
structure in L are compatible. This means that, for any pair of elements f
and g in L satisfying f < g, it follows that f+4 < g+h holds for all Ain L
and af < ag holds for all real numbers a = 0. If, in addition, the order
structure in L is a lattice structure (i.e., if any pair of elements in L has a least
upper bound with respect to the order), then L is called a vector lattice or
also a Riesz space. Familiar examples are the vector space of all real contin-
uous functions on a given topological space, all the spaces L, (p > 0) in
integration theory, and certain linear subspaces of the vector space of all
Hermitian operators on a Hilbert space. The present book is devoted to the
theory of Riesz spaces. The first volume contains what may be called the
algebraic part of the theory, whereas the second volume will be more analytic
in character.

The theory of Riesz spaces was founded, independently, by F. Riesz, H.
Freudenthal and L. V. Kantorovitch in the years around 1935, and it is in-
teresting to observe now, more than thirty years later, the different methods
of approach. F. Riesz was interested primarily in whatis at present called the
order dual space of a given ordered vector space, and he presented an ex-
tended version of his short 1928 Congress note ([1], International Math-
ematical Congress at Bologna) in a 1940 Annals of Mathematics paper [2],
a translation of a 1937 Hungarian paper. H. Freudenthal, in 1936, proved a
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Vi PREFACE

“spectral theorem” for Riesz spaces [1], the significance of which is illustrated
by the fact that the Radon-Nikodym theorem in integration theory as well
as the spectral thecrem for Hermitian operators in Hilbert space are corol-
laries, although it was not until early in the fifties that a direct method was
indicated for deriving the spectral theorem for Hermitian operators from the
abstract spectral theorem. Finally, around 1935, L. V. Kantorovitch ([1],
[2], [3]) began an extensive investigation of the algebraic and convergence
properties of Riesz spaces, with applications to linear operator theory. He
was soon joined, in Leningrad, by several other mathematicians, of which we
mention A. G. Pinsker, A. I. Judin and B. Z. Vulikh. A few year later, be-
tween 1940 and 1944, important contributions to the subject were published
by H. Nakano ([1], [2], [3], [4], [5]), T. Ogasawara [1], K. Yosida ([1],
[2], [3]) in Japan and S. Kakutani and H. F. Bohnenblust (with papers
about concrete representations of abstract L-spaces and M-spaces) in the
United States. After this first period it has still lasted a relatively long time
before the results and terminology of the various centers of research (mainly
in Japan, the Soviet Union and the United States) began to grow together.
As an illustration we mention the important paper by I. Amemiya ([2],
1953), an extension of earlier work by H. Nakano. On account of the
“Nakano terminology” in this paper it is not immediately visible that we
have to do here with prime ideal theory in Riesz spaces, to some extent
similar to M. H. Stone’s prime ideal theory in distributive lattices ([2],
1937). It is one of our objectives in the present book to collect the principal
results, unify the terminology, and draw the reader’s attention to similarities as
the one mentioned above. As is often the case with work of this kind, this has
led to certain new results (not always explicitly indicated as new in the text).

This is perhaps an appropriate point to say a few words about some other
books devoted, in part or wholly, to ordered vector spaces, or, more specifi-
cally, to Riesz spaces. In the book by G. Birkhoff on lattice theory ([1],
first edition in 1940, revised editions in 1948 and 1967), and also in the
book by L. Fuchs on partially ordered algebraic structures ([1], 1966), the
partially ordered vector spaces appear only as rather special examples. In the
Birkhoff book, as indicated by the title, the principal interest is in general
lattices without any other algebraic structure, and in the book by Fuchs a
Riesz space is considered mainly as an example of the more general notion
of a (not necessarily commutative) lattice group. The book by H. Nakano
([61, 1950) is pretty well restricted to the author’s own research. There is also
a book by T. Ogasawara (1948), the contents of which are not so easily ac-
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cessible, because the book is written in Japanese, and no translation has been
made. In the Soviet Union, in 1950, three mathematicians of the Leningrad
school (L. V. Kantorovitch, B. Z. Vulikh and A. G. Pinsker) published a
large monograph, called “Functional Analysis in Partially Ordered Spaces”,
and in 1961 B. Z. Vulikh [2] published a smaller and more modern textbook
on the same subject which is very readable, but still to a large extent devoted
mainly to the research done in the Soviet Union. Vulikh’s textbook has been
translated into English (1967). Finally, we mention the more recent books
by A. L. Peressini (Ordered Topological Vector Spaces, 1967) and G.
Jameson (Ordered Linear Spaces, 1970); the emphasis in both of these books
is on topological ordered vector spaces (i.e., ordered vector spaces in which
a topology is introduced such that the topology is compatible with the vector
space structure as well as with the order structure). Spaces of this kind (in
particular those in which the topology is generated by a Riesz norm) will
be treated in the second volume of the present book.

Readers who desire to restrict themselves at first to the topics of foremost
importance (in particular the readers interested primarily in Freudenthal’s
spectral theorem and its applications) are advised in the introductory Chap-
ter 1 to pay attention only to sections 1-3 and the very beginning of section 9,
and then to omit in Chapter 2 everything after Theorem 16.4 as well as in
Chapter 4 the sections 6 (on atoms) and 32 (on the Dedekind comple-
tion). Chapter 5 on prirae ideals may then also be omitted completely, and
in Chapter 6 (on Freucenthal’s spectral theorem) it is enough to study only
sections 38, 39, 40 un'i! after Theorem 40.2, and then section 41. This will
prepare the reader to understand all of Chapter 8 (on Hermitian and normal
operators in Hilbert space), apart from a few isolated references to the spec-
tral representation theory in Chapter 7. Finally, any reader who decides to
take up also the study of prime ideals (Chapter 5) and spectral representa-
tions (Chapter 7) is advised to look first or simultaneously at sections 5-8
of Chapter 1. ;

In 1967 we prepared a ‘“‘preprint” for the present volume which was
distributed on a small scale. The preprint was much more concise; for exam-
ple, most of Chapter 1 and all of the Chapters 5 and 7 were not included, and
also the number of bibliographical references was very small.

A major role in the second volume will be played by the properties of
linear mappings from one Riesz space into another, by the order dual space
of a given Riesz space, and by topological Riesz spaces (in particular by



VIII PREFACE

normed Riesz spaces). The interplay between topological continuity and
order continuity will be an importart feature. Some of this material can be
found in a series of notes published by us in the Proceedings of the Nether-
lands Academy of Science, Amsterdam, Vols. 66-68 (1963—65). A further
remark is ‘in order here. The spaces in sections 9-10, the normed K&the
spaces and the Orlicz spaces, serve to illustrate some phenomena discussed
in the abstract theory. This will be the case more frequently in the second
volume than in the first. After some hesitation we have decided, however,
to maintain these sections in the first volume.

We express our thanks to the National Science Foundation of the U.S.A.
and to the Netherlands Organization for the Advancement of Pure Re-
search (Z.W.0.) for financial support at various stages during the prepara-
tion of this work. We also wish to thank Mrs.'L. Decker and Mfs. A. Y.
Hudson who, in Pasadena and Leiden respectively, gave us their valuable
help in preparing the typed manuscripts of the present book as well as,
back in 1967, of the preprint. Finally, we express our appreciation for the
assistance and cooperation received from the staff at the North-Holland
Publishing Company.

W. A Luxemburg
A. C. Zaanen
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CHAPTER 1

Distributive Lattices and Normed Function Spaces

We present a survey of several definitions and theorems (on distributive
lattices, in particular Boolean algebras and Boolean rings, and on certain
normed linear function spaces), which will be needed in what follows. Most
of what is said in the sections 9 and 10 on fuhction spaces is not immediately
required.

1. Partial ordering

Let X be a non-empty set; the elements x, y, . . . of X will be called the points
of X. The set of all ordered pairs (x, y) of points of X is called the Cartesian
product of X by itself, and is denoted by X x X.

By a relation in X we shall understand a non-empty subset of X x X; the
relation is sometimes denoted by R, and we shall write xRy whenever (X, y)
is an element of the subset R of X x X which defines the relation. Well-known
examples are the equivalence relations; R is called an equivalence relation
whenever

(i) it follows from xRy and yRz that xRz (the relation is transitive),
(i) xRx holds for all x € X (the relation is refléxive),
(iii) it follows from xRy that yRx (the relation is symmetric).

If the equivalence relation R has the property that the subset of X x X
which defines R consists only of all points (x, x) for x € X, then R is the
relation of equality.

The relation R in X is called a partial ordering of X whenever R is transi-
tive, reflexive and anti-symmetric, i.e., whenever

(i) it follows from xRy and yRz that xRz,
(i1) xRx holds for all x € X,
(iii) it follows from xRy and yRx that x = y.

~ If Ris a partial ordering in X, we will usually write x < y (or, equivalently,
1



2 DISTRIBUTIVE LATTICES AND NORMED FUNCTION SPACES [Cu.1,§1

y = x) for xRy. Elements x, y of X for which either x < y or x = y holds
are said to be comparable; if neither x < y nor x = y holds, then x and y
are said to be incomparable. If every two elements of X are comparable, the
partial ordering is called a linear ordering. The other extreme case is that
every two different elements of X are incomparable, and so the partial order-
ing states now only that x < y holds if and only if x = y.

If X is partially ordered and Y is a non-empty subset of X, then Y is par-
tially ordgred in a natural manner by the partial ordering which Y inherits
from X. If the inherited partial ordering in Y is a linear ordering, then Y is
said to be a chain in X.

If X is partially ordered, Y a non-empty subset of X, and x, € X satisfies
xo = y for all y € Y, then x, is called an upper bound of Y. If x, is an upper
bound of Y such that x, < xg for any other upper bound x; of Y, then x,
is called a least upper bound or supremum of Y. In this case x, is uniquely
determined (in other words, any non-empty subset of X has at most one
supremum). Indeed, if both x, and x; are suprema of Y, then x, < x{, and
Xo < Xo, and so xo = x;. If x, is the supremum of Y, this will be denoted
by xo = sup Y or by ‘

Xo =sup (y:yeY).

The notions of lower bound and greatest lower bound or infimum are defined
similarly. Notation: x, = inf (y: y € Y) if x, is the infimum of Y.

The element x, of the partially ordered set X is called a maximal element
if it follows from x € X and x, < x that x, = x (observe that this is not the
same as requiring that x, 2 x holds for all x € X). If there exists an element
Xo € X such that x, = x holds for all x € X, then x, is called the largest
element of X, and in this case x, is also a maximal element. Actually, x, is
now the only maximal element of X. In the converse direction, if x, is the
only maximal element of the partially ordered set X, then x, is not necessarily
the largest element of X. Similar remarks hold for minimal elements and the
possibly existing smallest element.

We recall the following well-known and frequently used lemma.

Zorn’s lemma. If every chain in the partially ordered set X has an upper
bound, then X contains at least one maximal element.

We proceed with some definitions.

Definition 1.1. Let X be a partially ordered set.

' (i) The set X is called order complete if every non-empty subset of X has a
supremum and an infimum.
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(i1) The set X is called Dedekind complete if every non-empty subset which
is bounded from above has a supremum and every non-empty subset which is
bounded from below has an infimum.

(iii) The set X is called Dedekind a-complete if every non-empty finite or
countable subset which is bounded from above has a supremum and every
non-empty finite or countable subset which is bounded from below has an in-
Sfimum.

(iv) The set X is called a lattice if every subset consisting of two elements
has a supremum and an infimum.

For Dedekind completeness a one-sided condition is sufficient, as follows.

Theorem 1.2. The partially ordered set X is Dedekind complete if and only
if every non-empty subset which is bounded from above has a supremum.

Proof. Let every non-empty subset of X which is bounded from above have
a supremum, and assume that Y is a subset of X which is bounded from be-
low. We have to prove that inf Y exists. To this end, observe first that the
set L(Y) of all lower bounds of Y is non-empty and bounded from above, so
lo = sup L(Y) exists. Since / < y holds for all /e L(Y) and all y € Y, any
y € Yis an upper bound of L(Y), and so /, £ y. This shows that /, is a lower
bound of Y, i.e., l; = sup L(Y) is itself a member of L(Y'). It is evident now
that /, is the greatest lower bound of Y.

In a partially ordered set with a smallest and a largest element the notions
of order completeness and Dedekind completeness are evidently identical.
Conversely, of course, any order complete partially ordered set has a small-
est and a largest element.

2. Lattices

Let X be a lattice. We shall denote the supremum of the set consisting of the
elements x, y € X by sup (x, y), or by x v y if this is notationally more con-
venient. Similarly, the infimum of the set consisting of x and y will be de-
noted by inf (x, y) or by x A y. By induction it follows easily that in a lattice
every finite subset has a supremum and an infimum. If the elements in the
finite subset are x4, . . ., X,, its supremum is denoted by sup (x,, ..., x,) or
Xy V...VX, 0T Vj.;X;, and its infimum by inf (x,,..., x,) or x; A...AX,
O Aoy Xi.

Definition 2.1. The lattice X is called distributive if

XA(Y1Vy2) = (xAp) Vv (XAY,)
holds for all x, y,, y, € X.



4 DISTRIBUTIVE LATTICES AND NORMED FUNCTION SPACES [CH.1,§2

We can interchange suprema and infima in this definition, as shown by
the following theorem.

Theorem 2.2. The lattice X is distributive if and only if
' - xV(yiAy:) = (xVy )A(xvy,)
holds for all x,y,,y, € X.

Proof. Assume that X is a distributive lattice, and denote by / and r the
left hand side and right hand side respectively of the formula to be proved.
Also, write z = xv y,. Then

r=zA(xvy;) = (zAax)v(zAY,)
= {(evy)Aax}v{(xvy)Ay.}
= (xAX)V(y1AX)V (XAY)V (P1AY2)
=xV(AX)V(XAY) V(Y1 AY:) = xv (¥ AY;) =1,

where we have used in the last line that y; Ax < x and xAy, < x. The
proof in the converse direction is similar.

Theorem 2.3. In order that the lattice X is distributive, it is necessary and
sufficient that x Ay, < z and x Ay, < z implies x A (y;Vy,;) < z.

Proof. The necessity is evident from the definition-of distributivity. Con-
versely, let X be a lattice such that xAy, <z and xAy, < z implies
xA(y1Vy,) < z. We have to prove that

XA(P1Vy2) = (xAy)V(x¥AYz)

holds for x, y,, ¥, € X. Denoting the left hand side and right hand side of the
formula to be proved by / and r respectively, we have xAy, < /and xAy,
< I, so r £ L On the other hand, since xAy; < rand xAy, < r, we have
by hypothesis that xA (p; vy,) S r,i.e., I < r. It follows that [ = r.

If a lattice X has a smallest and (or) a largest element, these are sometimes
called the null and (or) the unit of X; we shall denote the null and the unit
by 6 and e respectively. If X is a distributive lattice with null and unit, and
if x, x’ € X satisfy x Ax' = 6 and xv x’ = e, then x’ is called a complement
of x. Of course, x is now also a complement of x'. Note the possibility that
X consists of only one element; now 6 = e.

Theorem 2.4. If the element x in the distributive lattice X with null and unit
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has a complement x', then x' is uniquely determined (in other words, every
element in X has at most one complement).

Proof. Assume that x~ is also a complement of x. Then

xT=x"v0=x"v(xAx)=(x"VvX)A(Xx“vX)=eAn(x"vX')
=x"vx.

’

Similarly x" = x"vx~. Hence x~ = x'.

If X is a lattice with null 8, and x Ay = 0 for the elements x, y of X, then
x and y are called disjoint elements. If Y is a non-empty subset of X, the set
of all x € X such that x is disjoint from all y € Y is called the disjoint comple-
ment of Y, and this set is denoted by Y*.

If X is a lattice with null , and Z is a subset of X with the property that
z,,2z,€Z implies z; vz, € Z and z € Z implies z' € Z for all z’ satisfying
z' < z, then Z is called an ideal in X. The condition that z € Z implies 2z’ € Z
for all z’ £ zis equivalent to zA x € Z for all z e Z, x € X. Note that the set
{6}, i.e., the set consisting of @ only, is an ideal. Also, if Y is a non-empty
subset of the distributive lattice X with null, then the disjoint complement of
Y is evidently an ideal in X.

3. Boolean algebras

By definition, a Boolean algebra is a distributive lattice with null and unit
such that every element in the lattice has a complement. By Theorem 2.4
the complement is uniquely determined. Note the possibility that the Boolean
algebra consists of only one element. ' ' '

Theorem 3.1. If x and y are elements in the Boolean algebra X such that
x Z y, then
X.y,=(zx=sz5y),

with the partial ordering inherited from X, is also a Boolean algebra with x as
null and y as unit.

Proof. We denote the null and the unit of X by 6 and e respectively. Evi-
dently, X, , is a distributive lattice (with respect to the partial ordering in-
herited from X)) with x as null and y as unit. It remains to show that every
z € X, , has a complement in X, ,. Let z’ be the complement of z in X, and
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set z* = (2’ Ay)v x. Then

zaz* = zA{(Z AY)vx} = {ZzA(ZAp)}v(zAXx) =0vXx =X
and
zvz* =zv(ZAy)vx =zv(ZAy) = (zvZ)A(zvy) =eAy =y,
which shows that z* is the complement of z in X, ,.

Theorem 3.2. For any x in the Boolean algebra X, denote the complement of

x by x'. Then the following holds.
(i) For any x, the element x' is the largest element in X disjoint from x.

(i) f x <y, thenx' =2 y'.

(iii) We have (xvy) = x'Ay' for all x,y in X (and hence (xAy) =
x'vy').

(iv) If {x,: T € {t}} is an indexed subset of X such that x = sup x, exists,
then x' = inf x..

Proof. (i) We have xAx’ = 6 and xvx’ = e. Assume that x~ is also
disjoint from x, so xAx~ = 0. Then y = x’' vx~ satisfies

xvy=xvx'vx~ =e
and
XAy =xA(X'vx~) = (xAx)v(xax™)=0.

Hence y = x', i.e., x' vx~ = x'. It follows that x~ < x’, which shows that
x’ is the largest element disjoint from x.

(ii) Let x S y. Then y'Ax = y'Ay = 0, so y' is disjoint from x. It fol-
lows now by means of (i) that y’ < x'.

(iii) It follows from x vy = x that (xvy)' < x'. Similarly (xvy) <y,
and so (xvy) = x'Ay’. We have also

X AYIA(xVY) = (X'AYAX)V(X'AY' AY)=0VvE =6,

so x’ Ay’ isdisjoint from x v y. This implies, by part (i), thatx’ Ay’ < (x v y)'.
The final Tesult’is, therefore, that

(xvy)y =x'Ay.

(iv) Evidently, x’ is a lower bound of the set of all x;. Let y be another
lower bound, i.e., y < x, forallz. Then y’ = x.' = x, forall 7, so y’ = x. It
follows that '’ < x', i.e.,, y < x’. This shows that x’ = inf x;.

We list some examples. Given the non-empty point set X, the collection I"
of subsets of X is called a ring whenever it follows from 4, BeI' that
Avu Bel and A—Bel, where A— B denotes the set theoretic difference
of A and B. It can easily be verified that in this case finite unions and finite



