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PREFACE

Functional analysis is the study of certain topological-algebraic
structures and of the methods by which knowledge of these structures
can be applied to analytic problems.

A good introductory text on this subject should include a presen-
tation of its axiomatics (i.e., of the general theory of topological
vector spaces), it should treat at least a few topics in some depth, and
it should contain some interesting applications to other branches of
mathematics. I hope that the present book meets these criteria.

The subject is huge and is growing rapidly. (The bibliography
in volume I of [4] contains 96 pages and goes only to 1957.) In order
to write a book of moderate size, it was therefore necessary to select
certain areas and to ignore others. I fully realize that almost any
expert who looks at the table of contents will find that some of his
(and my) favorite topics are missing, but this seems unavoidable. It
was not my intention to write an encyclopedic treatise. 1 wanted to
write a book that would open the way to further exploration.

This is the reason for omitting many of the more esoteric topics
that might have been included in the presentation of the general
theory of topological vector spaces. For instance, there is no dis-
cussion of uniform spaces, of Moore-Smith convergence, of nets, or
of filters. The notion of completeness occurs only in the context of
metric spaces. Bornological spaces are not mentioned, nor are
barreled ones. Duality is of course presented, but not in its utmost
generality. Integration of vector-valued function is treated strictly as
a tool; attention is confined to continuous integrands, with values in
a Fréchet space.

Nevertheless, the material of Part 1 is fully adequate for almost
all applications to concrete problems. And this is what ought to be
stressed in such a course: The close interplay between the abstract
and the concrete is not only the most useful aspect of the whole
subject but also the most fascinating one.

Here are some further features of the selected material. A fairly
large part of the general theory is presented without the assumption
of local convexity. The basic properties of compact operators are
derived from the duality theory in Banach spaces. The Krein-Milman
theorem on the existence of extreme points is used in several ways in
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Chapter 5. The theory of distributions and Fourier transforms is
worked out in fair detail and is applied (in two very brief chapters)
to two problems in partial differential equations, as well as to
Wiener’s tauberian theorem and two of its applications. The spectral
theorem is derived from the theory of Banach algebras (specifically,
from the Gelfand-Naimark characterization of commutative B*-
algebras); this is perhaps not the shortest way, but it is an easy one.
The symbolic calculus in Banach algebras is discussed in considerable
detail; so are involutions and positive functionals. Several fairly
recent results on Banach algebras that have not found their way into
other textbooks as yet are included.

I assume familiarity with the theory of measure and Lebesgue
integration (including such facts as the completeness of the LP-
spaces), with some basic properties of holomorphic functions (such
as the general form of Cauchy’s theorem, and Runge’s theorem), and
with the elementary topological background that goes with these two
analytic topics. Some other topological facts are briefly presented in
Appendix A. Almost no algebraic background is needed, beyond
the knowledge of what a homomorphism is.

Historical references are gathered in Appendix B. Some of
these refer to the original sources, and some to more recent books,
papers, or expository articles in which further references can be
found. There are, of course, many items that are not documented
at all. In no case does the absence of a specific reference imply any
clais1 to originality on my part.

Most of the applications are in Chapters 5, 8, and 9. Some are
in Chapter 11 and in the more than 250 exercises; many of these are
supplied with hints. The interdependence of the chapters is indi-
cated in the following diagram.
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This book grew out of a course that I have taught at the Univer-
sity of Wisconsin. I have had many fruitful conversations about
various topics in it with some of my colleagues, especially with
Patrick Ahern, Paul Rabinowitz, Daniel Shea, and Robert Turner.
It is a pleasure to record my thanks to them.

Walter Rudin
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PART ONE

General Theory
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TOPOLOGICAL VECTOR SPACES

Introduction

1.1 Many problems that analysts study are not primarily concerned with a single
object such as a function, a measure, or an operator, but they deal instead with large
classes of such objects. Most of the interesting classes that occur in this way turn out
to be vector spaces, either with real scalars or with complex ones. Since limit processes
play a role in every analytic problem (explicitly or implicitly), it should be no surprise
that these vector spaces are supplied with metrics, or at least with topologies, that
bear some natural relation to the objects of which the spaces are made up. The
simplest and most important way of doing this is to introduce a norm. The resulting
structure (defined below) is called a normed vector space, or a normed linear space,
or simply a normed space.

Throughout this book, the term vector space will refer to a vector space over the
complex field € or over the real field R. For the sake of completeness, detailed
definitions are given in Section 1.4.
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1.2 Normed spaces A vector space X is said to be a normed space if to every
x € X there is associated a nonnegative real number || x||, called the norm of x, in such
a way that

(@ |lx+ yll < x|l + |yl for all x and y in X,
(b) Jlex|| = || ||x|| if x € X and « is a scalar,
(¢) |Ix|l >0if x#0.

The word “norm” is also used to denote the function that maps x to | x|.
Every normed space may be regarded as a metric space, in which the distance
d(x, y) between x and y is | x — y||. The relevant properties of d are:

(i) 0<d(x,y)< oo for all x and y,
(i) d(x,y)=0if and only if x = y,
(@ii) d(x,y) =d(y, x) for all x and y,
(iv) d(x,z)<d(x,y) +d(y, z) for all x, y, z.

In any metric space, the open ball with center at x and radius r is the set
B(x) ={y:d(x, y) <r}.
In particular, if X is a normed space, the sets
B,(0) ={x: x| <1} and  By(0) ={x: |lx]| <1}

are the open unit ball and the closed unit ball of X, respectively.

By declaring a subset of a metric space to be open if and only if it is a (possibly
empty) union of open balls, a topology is obtained. (See Section 1.5.) It is quite easy
to verify that the vector space operations (addition and scalar multiplication) are
continuous in this topology, if the metric is derived from a norm, as above.

A Banach space is a normed space which is complete in the metric defined by its
norm; this means that every Cauchy sequence is required to converge.

1.3 Many of the best-known function spaces are Banach spaces. Let us mention
just a few types: spaces of continuous functions on compact spaces; the familiar
I?-spaces that occur in integration theory; Hilbert spaces — the closest relatives of
euclidean spaces; certain spaces of differentiable functions ; spaces of continuous linear
mappings from one Banach space into another; Banach algebras. All of these will
occur later on in the text.

But there are also many important spaces that do not fit into this framework.
Here are some examples:

(@) C(Q), the space of all continuous complex functions on some open set Q in a
euclidean space R".

(b) H(Q), the space of all holomorphic functions in some open set Q in the complex
plane.



TOPOLOGICAL VECTOR SPACES 5

() Cg, the space of all infinitely differentiable complex functions on R" that vanish
outside some fixed compact set K with nonempty interior.

(d) The test function spaces used in the theory of distributions, and the distributions
themselves.

These spaces carry natural topologies that cannot be induced by norms, as we
shall see later. They, as well as the normed spaces, are examples of topological vector
spaces, a concept that pervades all of functional analysis.

After this brief attempt at motivation, here are the detailed definitions, followed
(in Section 1.9) by a preview of some of the results of Chapter 1.

1.4 Vector spaces The letters R and € will always denote the field of real numbers
and the field of complex numbers, respectively. For the moment, let ® stand for either
Ror €. A scalar is a member of the scalar field ®. A vector space over @ is a set X,
whose elements are called vectors, and in which two operations, addition and scalar
multiplication, are defined, with the following familiar algebraic properties:

(@) To every pair of vectors x and y corresponds a vector x + y, in such a way that
x+y=y+x and x+(y+2)=x+y) +z;

X contains a unique vector 0 (the zero vector or origin of X) such that x + 0 = x
for every xe X; and to each xe X corresponds a unique vector —x such that

x4+ (—=x)=0.
(b) To every pair (a, x) with « € ® and x € X corresponds a vector ax, in such a way
that

Ix =x, a(Bx) = (af)x,
and such that the two distributive laws

a(x + y) = ax + ay, (a + B)x = ax + fx
hold.

The symbol 0 will of course also be used for the zero element of the scalar field.
A real vector space is one for which ® = R; a complex vector space is one for
which ® = €. Any statement about vector spaces in which the scalar field is not
explicitly mentioned is to be understood to apply to both of these cases.
If X is a vector space, A = X, B< X, xe€ X, and 1 € ®, the following notations
will be used: '
x+A={x+a:ae A},
x—A={x—a:ae A},
A+B={a+b:aec A, beB},
A ={Aa: a € A}.
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In particular (taking A = —1), — A4 denotes the set of all additive inverses of members
of A.

A word of warning: With these conventions, it may happen that 24 # A + A
(Exercise 1).

A set Y < Xis called a subspace of X if Y is itself a vector space (with respect to
the same operations, of course). One checks easily that this happens if and only if

0e Y and
aY+ pYcY

for all scalars o and .
A set C = X is said to be convex if

tC+(1-0CcC O<t<).

In other words, it is required that C should contain tx + (1 — t)y if xe C, y € C, and
Lt < 1.
A set B < X is said to be balanced if aB = B for every a € ® with |a| < 1.
A vector space X has dimension n (dim X = n) if X has a basis {u,, ..., u,}.
- This means that every x € X has a unique representation of the form

X =oqu + -+ o,u, (a; € D).

If dim X = n for some n, X is said to have finite dimension. 1If X = {0}, then dim X = 0.

Example If X = € (a one-dimensional vector space over the scalar field €),
the balanced sets are: ¢, the empty set ¢, and every circular disc (open or
closed) centered at 0. If X = R* (a two-dimensional vector space over the scalar
field R), there are many more balanced sets; any line segment with midpoint at
(0, 0) will do. The point is that in spite of the well-known and obvious identifica-
tion of € with R?, these two are entirely different as far as their vector space
structure is concerned.

1.5 Topological spaces A topological space is a set S in which a collection t of
subsets (called open sets) has been specified, with the following properties: S is open,
& is open, the intersection of any two open sets is open, and the union of every collec-
tion of open sets is open. Such a collection 7 is called a topology on S. When clarity
seems to demand it, the topological space corresponding to the topology t will be
written (S, t) rather than S.

Here is some of the standard vocabulary that will be used, if S and 7 are as above.

A set E < S'is closed if and only if its complement is open. The closure E of E
is the intersection of all closed sets that contain E. The interior E° of E is the union
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of all open sets that are subsets of E. A neighborhood of a point p € S is any open set
that contains p. (S, t) is a Hausdorff space, and t is a Hausdorff topology, if distinct
points of S have disjoint neighborhoods. A set K < S'is compact if every open cover
of K has a finite subcover. A collection " = 7 is a base for t if every member of
(that is, every open set) is a union of members of 7. A collection y of neighborhoods
of a point p € S'is a local base at p if every neighborhood of p contains a member of 7.

If E = S and if o is the collection of all intersections E N V, with V € 1, then o
is a topology on E, as is easily verified ; we call this the topology that E inherits from S.

If a topology 7 is induced by a metric d (see Section 1.2) we say that 4 and t
are compatible with each other.

A sequence {x,} in a Hausdorff space X converges to a point x € X (or: lim,_,
x, = x) if every neighborhood of x contains all but finitely many of the points x,.

1.6 Topological vector spaces Suppose 7 is a topology on a vector space X such
that

(a) every point of X is a closed set, and
(b) the vector space operations are continuous with respect to T.

Under these conditions, 7 is said to be a vector topology on X, and X is a
topological vector space.

Here is a more precise way of stating (a): For every x € X, the set {x} which has
X as its only member is a closed set.

In many texts, (@) is omitted from the definition of a topological vector space.
Since (a) is satisfied in almost every application, and since most theorems of interest
require (a) in their hypotheses, it seems best to include it in the axioms. [Theorem 1.12
will show that (a) and (b) together imply that t is a Hausdorff topology.]

To say that addition is continuous means, by definition, that the mapping

(x,y)=>x+y

of the cartesian product X x X into X is continuous: If x, € X for i = 1, 2, and if V
is a neighborhood of x; + x,, there should exist neighborhoods V; of x; such that

Ni+V,cV.
Similarly, the assumption that scalar multiplication is continuous means that the
mapping

(a, x) > ax

of ® x X into X is continuous: If x € X, o is a scalar, and Vis a neighborhood of ax,
then for some r > 0 and some neighborhood W of x we have BW < V whenever
[B—a| <r.



